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In this paper we report on large-scale high resolution simulations of beam dynamics in electron linacs

for the next-generation x-ray free electron lasers (FELs). We describe key features of a parallel macro-

particle simulation code including three-dimensional (3D) space-charge effects, short-range structure

wakefields, coherent synchrotron radiation (CSR) wakefields, and treatment of radio-frequency (rf)

accelerating cavities using maps obtained from axial field profiles. We present a study of the micro-

bunching instability causing severe electron beam fragmentation in the longitudinal phase space which is a

critical issue for future FELs. Using parameters for a proposed FEL linac at Lawrence Berkeley National

Laboratory (LBNL), we show that a large number of macroparticles (beyond 100 million) is generally

needed to control the numerical macroparticle shot noise and avoid overestimating the microbunching

instability. We explore the effect of the longitudinal grid on simulation results. We also study the effect of

initial uncorrelated energy spread on the final uncorrelated energy spread of the beam for the FEL linac.

DOI: 10.1103/PhysRevSTAB.12.100702 PACS numbers: 29.20.�c, 29.27.Bd

I. INTRODUCTION

Generation of high-power coherent radiation in x-ray
free electron lasers (FELs) requires high peak current, low
emittance, and low energy spread multi-GeV electron
beams. Typically, low peak current, low emittance, and
low energy spread beams are produced in the electron
gun while a high peak current is obtained through various
stages of bunch compression during acceleration in the
linac to a final energy. Unfortunately, collective effects
driven by space charge, linac structure wakefields, and
coherent synchrotron radiation (CSR) tend to cause an
unacceptable degradation of the beam emittance and en-
ergy spread thus limiting the maximum achievable peak
current. Previous studies have shown [1–5] that the accu-
mulated effect of the longitudinal space-charge force along
the linac driven by small density fluctuations can cause
large energy modulations along the bunch. After passing
through a bunch compressor, the energy modulation is
further amplified in the presence of CSR and is converted
into larger density modulations. This phenomenon, known
as ‘‘microbunching instability,’’ results in the appearance
of large current fluctuations and significant growth of the
uncorrelated and correlated energy spread, where the latter
is seen as electron beam fragmentation in the longitudinal
phase space. Often, the gain of the instability is large
enough to amplify to unacceptable level the inevitable
density fluctuations present in the electron beam due to
shot noise [6].

The microbunching instability has been studied using
both a direct Vlasov solver [7,8] and macroparticle track-
ing [9]. Direct Vlasov solvers do not suffer from the
spurious noise characteristic of macroparticle sampling

and may provide an accurate description of the micro-
bunching instability both in the linear and nonlinear re-
gimes. However, in the implementation presently available
this method is limited to a simplified two-dimensional
phase-space computational model.
Macroparticle codes provide well established and suc-

cessful methods for studying beam dynamics but they tend
to overestimate the effect of instabilities that are sensitive
to small fluctuations of the beam density, like those in-
duced by shot noise. These will be artificially magnified by

a factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=Nmp

q
in a simulation employing Nmp macro-

particles to represent a beam of N electrons. Therefore, an
obvious way to improve the accuracy of the simulations is
to increaseNmp. Fortunately, progress in code development

and the availability of high-power computational resources
are now making simulations with billions of macropar-
ticles (a number comparable to a real electron bunch
population) quite practical. We should add that important
aspects of the microbunching instability, like the determi-
nation of the gain function, can still be addressed in a
meaningful way using a limited number of macroparticles,
as demonstrated in [9]. Moreover, it is possible that quiet-
start techniques to reduce the unphysical component of
shot noise, which have proved quite successful for the
studies of beam dynamics in FELs [10], could also be
applied to the beam dynamics in a linac. However, our
preliminary attempts to experiment with these techniques
did not yield satisfactory results and eventually motivated
us to pursue the more straightforward strategy of increas-
ing the number of macroparticles used in the simulations.
Another advantage of using a large number of macropar-
ticles (close to real number of electrons in a beam) is that
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the macroparticle distribution at the end of the linac can be
directly used for next stage FEL simulation without worry-
ing about proper modeling of initial shot noise of the beam.

One purpose of the present paper is to report on the latest
developments of the IMPACT code [11], which has enabled
such simulations and is now being used in design studies of
a proposed x-rays FEL linac at the Lawrence Berkeley
National Laboratory [12]. In this paper we also present a
discussion for the need of large-scale high resolution simu-
lations of high brightness beams, and show specific appli-
cations to beam dynamics studies for the next-generation
x-ray FEL linac. The organization of this paper is as
follows: the computational model used in the beam dy-
namics simulation is presented in Sec. II; the choice of
numerical parameters is discussed in Sec. III; large-scale
simulation of the proposed LBNL FEL linac is presented in
Sec. IV; and the summary is given in Sec. V. Finally, a
macroparticle up-sampling scheme that reduces the macro-
particle shot noise from an initial distribution with a
smaller number of macroparticles while maintaining the
global properties of the original distribution is described in
the Appendix.

II. COMPUTATIONAL MODEL

The beam dynamics simulation of the FEL linac was
performed using a parallel macroparticle tracking code,
IMPACT [11]. The IMPACT code is an object-based parallel

particle-in-cell code to simulate high intensity, high bright-
ness beam transport mainly in rf linear accelerators. It uses
a split-operator method to separate the particle motion due
to the given external fields from the particle motion due to
the collective self-consistent space-charge fields and wake-
fields [13].

A. Modeling of rf structures

Beam dynamics inside an rf cavity, including longitudi-
nal accelerating fields and transverse focusing fields, is
modeled using linear transfer maps and multiple reference
particles to accommodate nonlinear rf effects along the
bunch discussed at the end of this section. The vector
potentials associated with an axis-symmetric rf cavity,
specified through the order needed to compute linear trans-
verse dynamics, are

Ax ¼ "0ðzÞ
2!�

x sinð!�tþ �Þ (1)

Ay ¼ "0ðzÞ
2!�

y sinð!�tþ �Þ (2)

Az ¼ � 1

!�

�
"ðzÞ � r2

4

�
"00ðzÞ þ!2

�

c2
"ðzÞ

��
sinð!�tþ �Þ;

(3)

where "ðzÞ denotes the spatial part of the electric field at
r ¼ 0,

Ezðr ¼ 0Þ ¼ "ðzÞ cosð!�tþ �Þ (4)

and where a superscript prime denotes d=dz, !� is the
angular frequency of the rf field, c is the speed of light in
vacuum, and � is the initial phase. Using the longitudinal
position z as the independent variable, the dynamics can be
described in terms of canonical coordinates and momenta
ðx; px; y; py; t; ptÞ and the Hamiltonian is given by

Hðx; px; y; py; t; pt; zÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
t =c

2 �m2c2 � ðpx � qAxÞ2 � ðpy � qAyÞ2
q

� qAz; (5)

where t denotes the particle’s arrival time at the location z, its canonically conjugate momentum pt is the negative of the
particle’s total energy, and q is the charge of the particle. One can next define a set of canonical variables that are
dimensionless deviations from a reference trajectory [x ¼ px ¼ y ¼ py ¼ 0, t0ðzÞ, pt0ðzÞ] and one can obtain the
corresponding Hamiltonian for these new variables. Expanding the new Hamiltonian around the reference trajectory,
the lowest order terms are quadratic, and they govern the linear dynamics. The linear transfer matrix corresponding to the
quadratic Hamiltonian can furthermore be factored as [14]

�x

�px

 !
f

¼ u�1=2 0

�u1=2� u1=2

 !
f ax bx

cx dx

 !
f u1=2 0

u1=2� u�1=2

 !
i �x

�px

 !
i

(6)

�y

�py

 !
f

¼ u�1=2 0

�u1=2� u1=2

 !
f ay by

cy dy

 !
f u1=2 0

u1=2� u�1=2

 !
i �y

�py

 !
i

(7)

�

�pt

 !
f

¼ u�3=2 0

� 3l
2 ðu

0
uÞu3=2 u3=2

 !
f a� b�

c� d�

 !
f u3=2 0

3l
2 ðu

0
uÞu3=2 u�3=2

 !
i �

�pt

 !
i

; (8)
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where

�x ¼ x=l; �px ¼ px=ðmcÞ (9)

�y ¼ y=l; �py ¼ py=ðmcÞ (10)

� ¼ !t�!t0; �pt ¼ ðpt � pt0Þ=ðmc2Þ; (11)

where l ¼ c=!, ! is the scaling angular frequency, m is
the rest mass of a particle, and superscripts i and f denote
initial and final values, respectively. In the preceding for-
mulas, � is given by

� ¼ l

2

�ð�0�0Þ0
�0�0

� ðq=mc2Þ"0 sinð�sÞ
�0�0!�=c

�
(12)

and u ¼ �0�0, l ¼ c=!, �0 ¼ vz0=c, �0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

0

q
,

vz0 is velocity of the reference particle on axis, and �s is
the synchronous phase of the reference particle given by
�s ¼ !�t0ðzÞ þ �. Here, the time of flight t0 and the
relativistic factor �0 of the reference particle are given by

t00 ¼
�0=cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
0 � 1

q (13)

�0
0 ¼ ðq=mc2Þ"ðzÞ cosð!�t0 þ �Þ: (14)

The quantities aj, bj, cj, and dj (j ¼ x, y, �) satisfy the

following equations:

a0j ¼ cj=l; b0j ¼ dj=l; (15)

c0j ¼ �l�jaj; d0j ¼ �l�jbj (16)

with initial values aj ¼ dj ¼ 1, bj ¼ cj ¼ 0, and�j (j ¼
x, y, �) are given by

�x ¼ �y

¼ ðq=mc2Þð!�=cÞ
2�3

0�
3
0

" sinð�sÞ

þ 1

2

�
1þ �2

0

2

��ðq=mc2Þ" cosð�sÞ
�2

0�
2
0

�
2

(17)

�� ¼ �2
0 þ 1

2

�3
0�0

ðq=mc2Þð!�=cÞ" sinð�sÞ

� 3

2

q=mc2

�2
0�0

"0 cosð�sÞ

þ 3

2

�
1� �2

0

2

��ðq=mc2Þ" cosð�sÞ
�2

0�
2
0

�
2
: (18)

As a test example, we transport a test particle through an
rf cavity using the above linear transfer map and compare it
with direct numerical integration of the Hamiltonian equa-
tions of motion. The computed trajectories from both
methods are shown in Fig. 1. The transfer map method

agrees well with direct numerical integration in this ex-
ample. Using above transfer maps for a single reference
particle, we slice the beam longitudinally into multiple
slices so that each slice has an individual reference particle
through the rf cavity. The particle coordinates are con-
verted into the multiple reference particle system coordi-
nates in front of the rf cavity, tracking through the rf cavity,
and then converted back to the original coordinates. Using
multiple reference particles helps capture the effect of
nonlinear rf acceleration.

B. Treatment of space-charge effects

The 3D space-charge forces are calculated at each time
step from the solution of the Poisson equation in the beam
frame using a convolution of the electron charge density
with the Green function for the scalar potential with open
boundary conditions. This convolution is calculated nu-
merically on a 3D grid using an integrated Green function
method with an fast-Fourier-transform (FFT)-based calcu-
lation of the cyclic summation on a doubled computational
domain [15]. The space-charge fields are Lorentz trans-
formed back to the laboratory frame and used along with
the corresponding azimuthal magnetic self-field to advance
the particle momentum.
As a test of the space-charge model, we computed the

energy modulation of an initial 120 MeV round uniform
electron beam with rb ¼ 200 �m radius and I ¼ 120 A
uniform current perturbed by a A ¼ 5% modulation, and
zero initial emittance propagating through three-meter drift
space. Figure 2 shows the amplitude of energy modulation
as a function of distance in comparison with an often-used
analytical model of longitudinal space-charge impedance
[6],

ZðkÞ ¼ iZ0

��rb

1� �K1ð�Þ
�

���������¼krb=�
; (19)
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FIG. 1. (Color) Horizontal and longitudinal trajectories through
an rf cavity from the linear transfer map and from direct
numerical integration.
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where Z0 ’ 120� Ohms is the vacuum impedance, K1 the
modified Bessel function of the second kind, � the relativ-
istic factor, and k ¼ 2�=	 the perturbation wave number.

This analytical model presupposes that the longitudinal
component of the electric field across the beam is uniform
and equal to the value on the beam axis. This is a good
approximation if the wavelength of the perturbation as
measured in the beam comoving frame is large compared
to the beam transverse radius (i.e. krb=� � 1). The rela-
tive energy modulation induced over the distance s by the
model impedance (19) starting from a relative current
sinusoidal modulation A is obtained from the formula

�E=E ¼ 4�A jZðkÞj
Z0

ðsIÞ=ð�IAÞ, where IA ’ 17 kA is the

Alfvén current. However, as shown in the figure, at smaller
wavelengths this analytical model (dashed lines) tends to
overestimate the energy modulation when this is averaged
over the beam transverse density [16]. Indeed, a better
approximation of the numerical result (see solid lines in
the figure) is given by the average ZavgðkÞ ¼
2
Rrb
0 Zðk; rÞrdr=r2b with

Zðk; rÞ ¼ iZ0

��rb

1� �I0ðkr=�ÞK1ð�Þ
�

���������¼krb=�
(20)

yielding

ZavgðkÞ ¼ iZ0

��rb

1� 2I1ð�ÞK1ð�Þ
�

���������¼krb=�
; (21)

where I0 and I1 are the modified Bessel functions of the
first kind. Note that Eq. (19) corresponds to the on-axis
impedance ZðkÞ ¼ Zðk; r ¼ 0Þ.

C. Computation of CSR wakefields

The CSR is modeled as a one-dimensional (1D) longi-
tudinal wakefield as described in Refs. [17–19], where the
change of energy due to CSR is given for steady state
radiation by

dE

cdt
¼ � 2e2

4�
03
1=3R2=3

Z s

�1
1

ðs� s0Þ1=3
d	ðs0Þ
ds0

ds0: (22)

The above integration is separated into two integrals:
one is from �1 to s� h, and the other is from s� h to s
[20]. Here, h is the mesh size for numerical integration. To
calculate the first integral numerically, we carry out ex-
plicit low-pass filtering of the charge density and utilize a
low order trapezoidal rule numerical integration scheme to
s� h. The numerical filter used here is given by

	i ¼ 1

96
ð7	i�2 þ 24	i�1 þ 34	i þ 24	iþ1 þ 7	iþ2Þ:

(23)

This local filter is computationally inexpensive to apply
and also conserves total charge. Figure 3 shows the transfer
function of the filter in the frequency domain. The transfer
function of the filter approaches zero for frequency close to
the Nyquist frequency. In the high statistic simulation such
as using billion macroparticles, this filter can be turned off
without affecting the final simulation results. For the sec-
ond integral within the last mesh spacing, h, of the singu-
larity, we replace 	ðsÞ with a second-order polynomial fit
to the smoothed density, and then evaluate the integral over
½s� h; s� analytically. Figure 4 shows the results of testing
the CSR routine by simulation of the passage through a
single 50 cm bend magnet of a distribution composed of
two million particles all having equal energy, but with a
sinusoidal charge density modulation in the z direction.
The modulation wavelength is 20 microns with 20% am-
plitude. The beam has 0.8 nC charge with 230 MeVenergy.
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FIG. 3. (Color) The transfer function of the filter in frequency
domain.
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FIG. 2. (Color) Amplitude of energy modulations as a function
of distance induced by space charge starting from initial 5%
current sinusoidal modulations with wavelengths 	 ¼ 15 �m,
30�m, and 50 �m for a beam drifting in free space with initial
uniform transverse density, circular cross section, and vanishing
emittance. The results from IMPACT simulations (dots) are com-
pared to the longitudinal space-charge impedance models of
Eq. (19), dashed lines, and Eq. (21), solid lines.
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The bunch length is 0.2 mm and the bending radius is
7.11 m. The solid blue line is the theoretical prediction,
seen to be in very good agreement with the numerical
simulation result, shown in red. Here, the theoretical pre-
diction is based on direct analytical integration of Eq. (22)
with a sinusoidal current modulation on top of a flattop
distribution. In separate tests we verified that the local
energy spread in the final distribution is due to a nonzero
transverse emittance (0.015 mmmrad) of the initial distri-
bution. What appears to be a solid horizontal line at �� ¼
0 is the initial distribution footprint in the longitudinal
phase space.

D. Computation of structure wakefields

Besides the CSR wakefield, the short-range longitudinal
wakefield (monopole) and transverse wakefield (dipole)
are also included in the computational model of the
IMPACT code. The effective forces from wakefields are

given by

FxðsÞ ¼ q
Z smax

s
WTðs0 � sÞxðs0Þ	ðs0Þds0 (24)

FzðsÞ ¼ q
Z smax

s
WLðs0 � sÞ	ðs0Þds0; (25)

where WT is the transverse wake function in the time
domain, smax is the bunch head location, WL is the longi-
tudinal wake function in the time domain, and 	 is the line
density function of the beam. For the effective force in the
transverse y direction, x is replaced by y in Eq. (24) and the
corresponding transverse wake function is used. The trans-
verse and longitudinal wake functions are provided exter-
nally according to different accelerating structures. To
compute the effective forces from wakefields more effi-
ciently, we extend the above integrals into a full domain

convolution as

FðsÞ ¼
Z smax

smin

Gðs0 � sÞ�ðs0Þds0; (26)

where smin is the bunch tail location and

Gð�Þ ¼
�
WT=Lð�Þ for � � 0
0 for � < 0

(27)

�ðsÞ ¼
�
xðsÞ	ðsÞ for transverse wake

	ðsÞ for longitudinal wake:
(28)

The above convolution has the same form as the space-
charge field computing in an open boundary condition and
can be calculated using the same FFT-based method on a
doubled computational domain as the space-charge force
calculation [15]. This reduces the computational cost from
theOðN2Þ by direct summation of the above wake function
integral to the O½N logðNÞ� by using the FFT-based
method.

III. CHOICE OF NUMERICAL PARAMETERS

When carrying out macroparticle simulations of the
beam dynamics in an FEL linac, the choice of numerical
parameters, e.g., number of macroparticles, can signifi-
cantly affect the final outcome because of the high sensi-
tivity of the microbunching instability to small density
fluctuations. In this study we modeled two cases: one
with 2 keV uncorrelated energy spread at the beginning
of the linac and one with 5 keV. The 2 keV case is expected
to exhibit more microbunching instability [6]. In what
follows we show a few simulation results of the electron
beam dynamics in the proposed FEL linac at the Lawrence
Berkeley National Laboratory using an initial square root
parabolic current distribution. The only parameter that we
varied for each case was the number of macroparticles.
Specific information regarding linac configuration and
electron beam parameters can be found in [12] and will
be discussed in Sec. IV. We characterize the microbunch-
ing instability using two parameters: the rms slice energy
spread and the rms fluctuation of the energy centroid of
each slice. The slices were chosen to be comparable to the
size of the grid used in the Poisson solver, i.e., of the order
of a fraction of a �m. The rms energy spread for each ith
slice is defined as 
2

i ¼ hðE� hEiiÞ2ii, where h�ii denotes
averaging over the electrons in the ith slice. The rms
fluctuation of the slice energy centroid is defined as 
2

flct ¼hðhEii � �EÞ2i, where �E is the average beam energy ob-
tained after subtraction of long-scale smooth energy var-
iations caused by the nonlinearity of the rf waveform and rf
structure wakefields. Similarly to 
i, we exclude tails
while calculating 
flct. The fluctuation of the slice energy
centroid at short wavelength may interfere with the pos-
sible application of seeding techniques for x-ray produc-
tion and induce an undesired increase in the bandwidth of
the resulting x-ray pulses [21].
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Figure 5 shows the slice (i.e. uncorrelated) energy
spread averaged over all slices in the bunch core at the
end of the linac as a function of the number of macro-
particles. The error bars in the figure give a measure of the
variation of
i from slice to slice, i.e., rms value of the slice
energy spread variation. For the case with 5 keV initial
energy spread (red data points), we observe that the un-
correlated energy spread at the end of the linac begins to
saturate at 100 million macroparticles, while it continues to
decrease in the 2 keV case (green data points).

Figure 6 shows the final rms energy fluctuation 
flct as a
function of the number of macroparticles employed in the
simulation. For the initial 5 keV uncorrelated energy
spread case, the amplitude of the energy fluctuations ap-

proaches a saturation value of about 120 keV when the
number macroparticles exceeds one billion. For the initial
2 keV uncorrelated energy spread, the amplitude of the
energy fluctuations continues to decrease up to the largest
number of macroparticle used, five billion, which is the
same as the physical number of electrons contained in the
0.8 nC electron beam.
Figures 5 and 6 suggest that an adequate number of

macroparticles is needed to obtain a generally fair assess-
ment of the energy spread at the end of the linac in the
presence of microbunching instability starting from the
shot noise. The exact number of macroparticles to be
used may vary from case to case and will depend on the
gain of the microbunching instability for the specific linac
lattice under consideration.
The numerical grid used in the calculation of collective

effects can provide artificial smoothing of the numerical
electron density distribution compared with the real distri-
bution. As the number of macroparticles approaches the
physical number of electrons in a bunch, the finite number
of numerical grid points being used may cause some un-
physical smoothing of the real shot noise inside electron
beam. For example, using 2048 numerical grid points in
our application supports a minimum wavelength of 3 �m.
Any noise with a wavelength below that wavelength will be
suppressed by the grid. Fortunately, the gain of the micro-
bunching instability falls off quickly at short wavelengths
due to the smoothing effect of finite energy spread.
Figure 7 shows the gain function of the microbunching
instability using the linear theory [4] together with the
numerical gain computed using macroparticle simulation
[22]. It is seen that the gain of the microbunching insta-
bility has a peak around 200 �m and decreases quickly
towards short wavelength. Further increasing the number
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of grid points beyond 2048 will not change the initial shot
noise level in the current profile around low frequency
where the gain curve is peaked, and hence the final energy
spread driven by the microbunching instability.
Incidentally, the above figure also shows a fairly good
agreement between the numerically calculated gain and
that from the linear theory. The slight discrepancies be-
tween the two functions could be due to the approximation
involved in the space-charge impedance model used in the
linear theory. To test the effects of the numerical grid, we
also carried out self-consistent one billion macroparticle
simulations of electron transport through the linac using
two sets of numerical grid points. Figure 8 shows the final
uncorrelated energy spread with 2048 and 4096 grid
points. It is seen that both sets of grid points give nearly
the same final energy spread. The above numerical ex-
ample used an initial 5 keV uncorrelated energy spread.
For a lower initial uncorrelated energy spread, the peak of
the microbunching instability gain could move towards
shorter wavelength, i.e., higher frequency. In this case, a
larger number of numerical grid points would be needed to
resolve the shorter wavelength in order to capture the
physics of the microbunching instability.

IV. HIGH RESOLUTION SIMULATION OFA
PROPOSED FEL LINAC AT LBNL

A design effort is now underway for a proposed soft x-
ray FEL array at LBNL. We have carried out self-
consistent macroparticle tracking of the driver linac start-
ing from the end of the injector to the end of the electron
beam switch yard, right before the FEL, using the IMPACT

code with one billion macroparticles and an initial square
root parabolic current distribution. Figure 9 shows a sche-
matic plot of the linac [12]. It consists of a laser heater, two
superconducting rf accelerating linac sections, a longitu-
dinal phase-space linearizer, a bunch compressor, and an

electron beam switch yard (spreader). While the real ma-
chine includes a laser heater, the interaction of the laser
light with electrons was not simulated in this study. The
accelerating structure used in this study is based on a
1.3 GHz nine-cell superconducting rf cavity since this linac
is designed for 1 MHz electron beam repetition rate. The
energy of the electron beam at the entrance to linac is about
40 MeV. The initial peak current is about 70 Awith a total
charge of 0.8 nC. The initial transverse rms beam size is
0.42 mm with a normalized rms emittance of 0.75 mm
mrad. The electron beam is accelerated to 260 MeV at the
end of the first linac (linac1) with an energy gain of
13:5 MeV=m within the accelerator cavities. It is followed
by the harmonic linearizer (HL) which is the second super-
conducting linac producing a maximum accelerating gra-
dient of 5 MeV=m at 3.9 GHz. The HL decelerates the
electron beam slightly while (together with L1) linearizing
the energy chirp of the bunch in front of the bunch com-
pressor (BC). The BC compresses the electron bunches and
increases the electron peak current up to about 1 kA. A
single chicane bunch compressor is used in this design.
Previous studies of the FERMI@ELETTRA FEL linac
suggested that a single chicane could give a smaller final
uncorrelated energy spread than the double chicane design
[8,23,24]. The bunch compressor consists of four rectan-
gular bending magnets of length 0.25 meters. The bending
angle for each magnet is 0.12 degrees. The separation
between the first magnet and the second magnet is 4.5 me-
ters. The separation between the second magnet and the
third magnet is 1.14 meters. After the bunch compressor,
the electron beam is accelerated from about 250 MeV to a
final energy of 2.4 GeV before entering a beam switch
yard, i.e., a spreader. The spreader includes ten branch
beam line lattices. Each lattice has two parts, the beam
take-off section and the FEL fan distribution section. Each
part is built as a triple bend achromat. Here, a kicker, a
septum and off-set quadrupoles are used together in place
of one bending magnet in the beam take-off section. These
achromats are also made isochronous for the nominal case
in order to minimize the effects of the microbunching
instability [25]. A more detailed description of the spreader
design is given in [26]. The uncorrelated energy spread in
an electron beam can smear out coherent growth of the
microbunching instability. A larger initial energy spread
leads to less growth of the microbunching instability.
Figure 10 shows the final uncorrelated rms energy spread

FIG. 9. (Color) A schematic plot of a proposed FEL linac at
Berkeley.
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along the bunch length for five different values of initial
uncorrelated energy spread. It is seen that for 2 keV initial
energy spread, there exist large amplitude short wave-
length fluctuations driven by the microbunching instability.
For 5 keV initial uncorrelated energy spread, the fluctua-
tions become much smaller and move towards longer
wavelength. Throughout most of the bunch, beyond
5 keV initial energy spread, the final energy spread shows
a linear dependence on the initial energy spread due to the
bunch compression. The microbunching instability has
been sufficiently suppressed by the incoherent motion of
electrons with large initial energy spread.

Figure 11 shows the longitudinal phase-space distribu-
tion at the end of the linac from a simulation using one
billion macroparticles (left) and five billion macroparticles

(right) with 5 keVuncorrelated energy spread, and 0.75 mm
mrad transverse emittance. It is seen that the full width of
the final relative energy spread is on the order 10�4 for a
major part of beam (the rms relative energy spread is 4�
10�5). Such a small energy spread will be especially
important for seeded FEL utilizing a high gain harmonic
generation technique [21]. There is a small energy modu-
lation in the longitudinal phase space with a period of
around 15 �m. After accounting for the compression fac-
tor, this modulation period is in a good agreement with the
gain function of the microbunching instability from the
linear theory. This modulation comes from the initial shot
noise in a 0.8 nC beam sampled with one billion macro-
particles, and is further amplified through the linac due to
the microbunching instability. With an increasing number
of macroparticles, the initial shot noise is reduced. The
final phase-space modulation as seen in the right plot of
Fig. 11 using five billion macroparticles becomes smaller
than that in the case of one billion macroparticles.
Figure 12 shows the current profile at the end of the

linac. The peak of the current profile reaches about 1.2 kA
with a reasonably flat distribution along a major part of the
beam.
The simulations shown above were carried out on a

Cray-XT4 parallel computer, Franklin, at the National
Energy Research Scientific Computing Center. Here, we
have used 512 processors (cores) for one billion macro-
particle simulations. Each processor has a theoretical peak
performance of 9:2 GFlop= sec and 2 GB of memory. The
computing node is connected to a dedicated SeaStar2
router through HYPERTRANSPORT with a 3D torus topology
to ensure high performance, low-latency communication
for message passing interface jobs [27]. The computing
time for such a simulation is about two hours. The total
memory usage of the simulation is about 112 GB. The rms

FIG. 11. (Color) Longitudinal phase space at the end of the linac using one billion (left) and five billion macroparticles (right) with an
initial 5 keV rms uncorrelated energy spread.
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information of the beam is calculated internally during the
process of simulation. The slice information such as slice
emittance or energy spread and current profile are calcu-
lated internally at a given location using the macroparticle
distribution. SNAPSHOT is used to output a fraction of
randomly sampled macroparticles at a given location.
The phase-space plots are made after projecting onto a
two-dimensional grid and plotted using software such as
MATLAB.

V. SUMMARYAND DISCUSSIONS

In this study we have shown that large-scale, high reso-
lution simulation is needed to accurately model electron
beam transport in the presence of the microbunching in-
stability when designing a linac for future FEL applica-
tions. We have presented the latest developments of the
IMPACT code that have made large-scale macroparticle

simulation possible. Numerical parameters such as number
of macroparticles and number of computational grid points
need to be chosen carefully to simulate initial shot noise in
the electron bunch and to capture the detailed physics of
the microbunching instability. As an application, we per-
formed simulations with one billion macroparticles of
electron beam transport through a designed soft x-ray
FEL linac at LBNL. The effects of initial uncorrelated
energy spread were also studied. Using 5 keV initial energy
spread resulted in the lowest level of energy spread at the
end of the linac.

The microbunching instability is primarily driven by
longitudinal space charge that is responsible for the growth
of the uncorrelated energy spread at the end of the linac [6].
In this study, we focused on the longitudinal space-charge
effect and turned off the transverse space-charge effects
inside the code. Including the transverse space-charge
effects led to rms mismatch near the entrance of the linac
and more than 30% emittance growth. Optimization of the

linac lattice design including 3D space-charge effects is
still in progress and will be reported elsewhere. At present,
billion macroparticle beam dynamics simulations of the
proposed FEL linac at LBNL have already shown that a
reasonable beam quality can be achieved at the end of the
linac with about 100 keVenergy spread at 2.4 GeVenergy,
and 1.2 kA peak current.
In this study, we also carried out billion particle simu-

lations starting from distributions with a smaller number of
particles obtained from different codes and using the up-
sampling scheme described in the Appendix. The up-
sampling scheme is based on local particle phase-space
repopulation. It produces reasonable smoothness to the
original macroparticle distribution while preserving the
global current profile and energy-phase correlations.
There are a number of external parameters provided by
the code users to control the extent of smoothness and the
global structure of the up-sampled distribution. Currently,
the choice of those parameters is based on a trial-and-error
method. This up-sampling scheme is still under investiga-
tion for further improvement.
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APPENDIX: MACROPARTICLE UP-SAMPLINGOF
INITIAL DISTRIBUTION

The FEL linac simulation starts with an initial electron
beam coming out of a photoinjector. Often, this initial
macroparticle distribution is produced with a low number
of macroparticles, i.e., as small as a few hundred thousand
or a few million. For an electron beam with about 1 nC
charge (i.e. 6.25 billion electrons), this small number of
macroparticles will cause significantly larger numerical
shot noise than the real shot noise among electrons. In
order to reduce the numerical noise in the initial macro-
particle distribution, a much larger number of macropar-
ticles, e.g., one billion macroparticles, is used in the
IMPACT code to repopulate the original particle distribution

(this process is also called up-sampling). In this study, we
used a local smoothing scheme instead of a global smooth-
ing scheme in which the original distribution is fitted using
some known functions and a large number of macropar-
ticles are sampled from the new distribution function.
Using a local smoothing scheme tries to preserve the
structure in the original distribution while providing suffi-
cient smoothing. However, the choice of the smoothing
parameters (box size) described in the following is still
based on a trial-and-error method.
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In the local smoothing scheme, a six-dimensional box
centered at the original macroparticle phase-space location
is used to up-sample the initial distribution. Inside each
box, Nnew=Nold macroparticles are generated in the six-
dimensional phase space. Here, Nnew is the total number of
macroparticles for the up-sampled distribution and Nold is
the total number of macroparticles in the original distribu-
tion. A uniform distribution is assumed inside the four-
dimensional transverse phase space of the box. The new
sampled particle coordinates in the x� px phase space will
be

�x new ¼ �xold þ sxRxi (29)

�p new
x ¼ �pold

x þ spxRpxi ; (30)

where �xold and �pold
x are the original particle coordinates,

�xnew and �pnew
x are the new up-sampled particle coordinates,

sx and spx are box sizes in the x and px dimensions, and Rxi

and Rpxi are uniformly distributed random numbers be-

tween �1 and 1 with i ¼ 1; � � � ; Nnew=Nold. The same
equation as above holds for the y-py phase space with
the label x replaced by y.

The choice of the box size determines the smoothness
and the structure of the new up-sampled distribution. If the
box sizes are equal to zero, the new particles will be at the
same phase-space location as the original particles, and
there is no smoothing at all in the new up-sampled distri-
bution and the full structure of the original distribution is
maintained. On the other hand, if the box size is too large,
the new distribution will have different phase-space struc-
tures compared with the original distribution due to the
assumption of uniform distribution inside the box. We
normally choose the box size so that the rms information
such as emittances calculated from the up-sampled distri-
bution is within a few percent of that from the original
distribution.

In the longitudinal phase plane of the box, a linear
current density distribution is assumed within the box
based on the current profile from the original particle
distribution. The correlated normalized energy deviation
with respect to phase is obtained from the original distri-
bution using a cubic spline. Here, the correlated energy
deviation denotes the functional dependency of the nor-
malized energy deviation with respect to the bunch length
(phase) in the longitudinal phase space. To find the corre-
lated energy deviation function �pcorr

t ð�Þ, the original par-
ticle distribution is divided into a number of slices along
the phase coordinate. The mean energy deviation is calcu-
lated for each slice. The functional dependence of the
energy deviation with respect to phase is obtained using
the cubic spline of the mean energy deviation value of each
slice. The uncorrelated energy denotes the difference be-
tween the energy deviation of an individual particle and the
correlated energy deviation at a given bunch phase loca-
tion. The phase coordinate of each new particle, �i, is

generated from a uniform distribution centered around
the original particle phase coordinate in the same way as
the transverse coordinates. The normalized energy devia-
tion �pnew

t of each new particle inside the box is given by

�p new
t ¼ �pcorr

t ð�iÞ þ �pt þ �Ei; (31)

where �pcorr
t ð�iÞ is the correlated energy deviation at phase

location �i, �pt is the uncorrelated energy deviation com-
puted from the original particle centered at each box, and
�Ei is a new uncorrelated energy deviation generated from
the sampling of a Gaussian distribution with an rms am-
plitude provided by users. Often �E is used to study the
effects of initial uncorrelated energy spread on the micro-
bunching instability and to define the optimal acceptable
initial energy spread in the design. This term is set to zero if
no artificial heating is included in the simulation. The box
size of the up-sampling is controlled by the code user and
should be chosen to produce smoothness of the resulting
particle distribution representative of the real number of
electrons while maintaining similar global properties (e.g.
current profile) of the original distribution. If the box size is
too large, the up-sampled distribution could be different
from the original distribution due to the uniform or linear
density assumption inside the box. On the other hand, if the
box size is too small, the up-sampled macroparticles will
be localized and will not provide sufficient smoothness to
the original distribution. Figure 13 shows the initial current
profile fluctuation (�I=I0) of a Gaussian distribution with
two million particle direct sampling, from one billion
particle up-sampling with 20 �m longitudinal box size,
with 300 �m longitudinal box size, with 500 �m longitu-
dinal box size, and from one billion particle direct sam-
pling. The direct two million particle sampling has a much
larger current fluctuation as expected. This fluctuation is
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box size, and from one billion particle direct sampling.

J. QIANG et al. Phys. Rev. ST Accel. Beams 12, 100702 (2009)

100702-10



brought down with larger up-sampling box size. However,
as the box size becomes too large (e.g. 500 �m), the up-
sampled current profile starts becoming noticeably differ-
ent from the original distribution. From our experience, it
is reasonable to choose the longitudinal box size to be large
enough to cover the wavelength corresponding to the peak
of the microbunching instability gain curve. This reduces
the level of microbunching instability from the initial shot
noise of the particle distribution.
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