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Beam halo studies using a three-dimensional particle-core model
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In this paper we present a study of beam halo based on a three-dimensional particle-core
of an ellipsoidal bunched beam in a constant focusing channel including the effects of nonline
focusing. For an initially mismatched beam, three linear envelope modes—a high frequency m
low frequency mode, and a quadrupole mode—are identified for an azimuthally symmetric bun
beam. The high frequency mode has three components all in phase; the low frequency mode
transverse components in phase and the longitudinal component 180± out of phase; the quadrupole mod
has no longitudinal component, and the two transverse components in the mode are 180± out of phase.
We also study the case of an ellipsoidal bunched beam without azimuthal symmetry and find th
high frequency mode and the low frequency mode are still present but the quadrupole mode is re
by a new mode with transverse components 180± out of phase and a nonzero longitudinal compone
Previous studies, which generally addressed the situation where the longitudinal-to-transverse fo
strength is roughly 0.6 or less, conclude that the oscillation of the high frequency mode is predomi
transverse, and that of the low frequency mode is predominantly longitudinal. In this paper we p
a systematic study of the features of the modes as a function of the longitudinal-to-transverse fo
strength ratio. We find that, when the ratio is greater than unity, the high frequency mode may co
a significant longitudinal component. Thus, excitation of the high frequency mode in this situ
can be responsible for the formation of longitudinal beam halo. Furthermore, while previous st
have observed halo amplitudes roughly 2–3 times the matched beam edge, for the present par
we observe much larger amplitudes (5 times or more). This is due to the fact that the longitu
to-transverse focusing ratio used here is greater than that of previous studies. The finding o
transverse halo amplitude can have significant impact on the design of high-intensity ion accele
where the longitudinal-to-transverse focusing ratio is slightly greater than unity in some par
the linac.

PACS numbers: 41.75.– i, , 29.27.Bd
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I. INTRODUCTION

High-intensity ion linacs have been proposed in rec
years for applications such as the driver for a spallat
neutron source, the production of tritium, and the tra
mutation of radioactive waste. These high-intensity lina
put strong limits on beam loss to the wall of the beam pi
since small fractional losses in a high average-current
chine can cause unacceptably high levels of radioact
tion. An important mechanism for beam loss is that due
the presence of a large amplitude, low-intensity beam h
far from the beam core. Such halos have been observe
existing machines, such as the LANSCE proton linac [
Furthermore, the evolution of beam halo has been stu
in experiments at the University of Maryland [2]. In th
design of next-generation accelerators, it is very import
to understand the physics of the beam halo.

The physics of beam halo has been extensively stud
through analytical theory and multiparticle simulatio
[3–15]. In these studies, the particle-core model has b
frequently used due to its usefulness in understand
the essential mechanism of halo formation and help
to predict the extent of beam halo. In this approach,
beam core is modeled using rms envelope equations,
the core oscillates due to an initial mismatch. Assum
1098-4402�00�3(6)�064201(10)$15.00
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that the oscillating beam has a prescribed density pro
the dynamics of halo particles are modeled by study
the motion of test particles subject to the external focus
force and the time-dependent, nonlinear space-charge
associated with the core. The test particles do not af
the motion of the core, which is consistent with th
assumption that the halo represents only a small frac
of the total beam charge. The oscillation frequency
test particles is amplitude dependent due to the nonlin
space-charge force from the core. This results in so
particles being driven to large amplitudes through
parametric resonance with the core [4].

In early studies of beam halo using the particle-co
model, a one-dimensional model was used to study
transverse halo dynamics for a round infinitely long be
propagating through a continuous focusing or a pe
odic focusing channel [6–8,10,13,16]. Two-dimension
(r-z) particle-core models with nonlinear rf fields hav
also been used to study the longitudinal beam halo
an isolated ellipsoidal bunched beam and the coup
between the transverse and longitudinal halo [17,1
Three-dimensional models with linear rf focusing ha
been employed to study the halo formation of a bunch
beam [19,20]. In Ref. [19], Bongardt obtained the env
lope mode frequencies using an approximate analyt
© 2000 The American Physical Society 064201-1
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TABLE I. Physical parameters in the test example.

Bunch current (A) 0.1
Proton energy (MeV) 471.4
Synchronous phase (degrees) 230
rf frequency (MHz) 700
Accelerating gradient �MV�m� 5.246
Lattice period (m) 8.54
Transverse phase advance without current (degrees) 81
Longitudinal phase advance without current

(degrees) 83.51
Transverse phase advance with current (degrees) 47.6
Longitudinal phase advance with current (degrees) 69.8
Transverse unnormalized rms emittance

�p mm mrad� 0.2319
Longitudinal unnormalized rms emittance

�p mm mrad� 0.4750
Transverse matched edge size (mm) 1.543
Longitudinal matched edge size (mm) 1.825

formula, and, in Ref. [20], Pichoff presented an exact cal-
culation of the envelope mode frequencies for a bunched
beam with azimuthal symmetry. In this paper, we will
use a fully three-dimensional particle-core model to study
all the modes of oscillation of an ellipsoidal bunched
beam in a constant focusing channel, and possible beam
halo formation. Three envelope modes will be identified
and their effects on the formation of beam halo through
a parametric resonance with test particles will be stud-
ied. Our analysis also includes the effect of nonlinear
rf fields. The physical parameters for the present study
are shown in Table I. For this study, we have chosen a
zero-current, longitudinal-to-transverse focusing strength
ratio of 1.03. This ratio, which is higher than that of con-
ventional designs, is relevant for future superconducting
linacs which may operate with high accelerating gradients.
The present study uses a 100 mA beam with a longitudi-
nal rms emittance of about twice the transverse emittance.
The remaining physical parameters are similar to a section
of the design of the accelerator production of tritium linac
[21]. Though our analysis is fully three-dimensional,
the numerical results based on Table I have azimuthal
symmetry.

The organization of this paper is as follows: the three-
dimensional particle-core model is described in Sec. II,
the linear envelope modes are discussed in Sec. III, the
test particle dynamics under the three envelope modes are
presented in Sec. IV, and the conclusions are summarized
in Sec. V.

II. THREE-DIMENSIONAL PARTICLE-CORE
MODEL

In the particle-core model, the system consists of a beam
core and test particles. The core, which contains most of
the particles, is modeled by the rms envelope equations.
The test particles contain a small fraction of the beam
064201-2
and are subject to the effects of external forces and space
charge forces due to the core. The physical origin of these
particles is beyond the scope of the particle-core model.
However, they could be present in the tail of the initial
distribution or they could be generated by instabilities of
the core [8,22]. The effects of test particles on the core
and the mutual Coulomb interactions among test particles
are neglected. In our model the core is assumed to be
an ellipsoid with a uniform charge density distribution.
The boundary of core is defined by a three-dimensional
elliptical equation as

x2

r2
x

1
y2

r2
y

1
z2

r2
z

� 1 , (1)

where the semiaxes ri are related to the rms beam sizes
ai by ri �

p
5 ai , i � x, y, z. Three-dimensional rms

equations were derived in [23,24], and the inclusion of
nonlinear rf focusing was treated in [17]. Under the
smooth approximation, the envelope equations for the
bunched beam including nonlinear rf focusing are given
by

d2rx

dz2
1 k2

x0rx 2 Ix�rx , ry , rz, 0�rx 2
e2

x

r3
x

� 0 , (2)

d2ry

dz2
1 k2

y0ry 2 Iy�rx , ry , rz, 0�ry 2
e2

y

r3
y

� 0 , (3)

d2rz

dz2
1 k2

z0f�rz�rz 2 Iz�rx , ry , rz, 0�rz 2
e2

z

r3
z

� 0 , (4)

with

Ii�rx ,ry , rz, s�

� C
Z `

s

dt

�e2
i 1 t�

q
�r2

x 1 t� �r2
y 1 t� �g2r2

z 1 t�
,

(5)

where ei � rx , ry, grz , for i � x, y, z, and C �
1
2

3
4pe0

q
mc2

I
frf b2g2 . Here, e0 is the vacuum permea-

bility, q is the charge, mc2 is the rest energy of the
particles, c is the vacuum light speed, I is the average
beam current, frf is the rf bunch frequency, b � y�c,
y is the bunch speed, and g � 1�

p
1 2 b2. The

quantities kx0 and ky0 in the envelope equations are
the transverse betatron wave numbers at zero current,
which are defined as ki0 � si0�L, i � x, y, under the
smooth approximation for a periodic quadrupole focusing
array element. Here, si0 is the zero-current transverse
phase advance per focusing period L. The longitudinal
synchrotron wave number at zero current, kz0, is defined
as kz0 �

p
2pqE0T sin�2fs���g3b3mc2l�, where E0T

is the accelerating gradient, fs is the synchronous phase,
and l is the rf wavelength. The function f�rz� in the
064201-2
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envelope equation is a nonlinear rf focusing factor defined
by

f�rz� �
15

�khrz�5
��3 2 �khrz�2� sin�khrz�

2 3khrz cos�khrz�� , (6)

where kh � 2p�bl [17]. In the above envelope equa-
tions, we have used a continuous sinusoidal wave to rep-
resent the average effect of the synchronous rf space
harmonics in the rf gap and neglected the acceleration of
the rf field. Normally, it is necessary to assume that the
external forces are linear in order to derive equations for
the second moments that do not involve higher moments.
However, by assuming that the ellipsoidal beam has a uni-
form density distribution, as we have done, one can derive
equations involving only second moments. For a space
charge dominated beam, this uniform-density assumption
is a reasonable approximation [13]. These equations dif-
fer from the linear envelope equations in Refs. [19] and
[20] with the inclusion of a nonlinear multiplicative factor
f�rz� in the longitudinal equation. This factor approaches
unity as khrz goes to zero. This corresponds to small
beam bunch size with respect to the rf wavelength l. The
emittances ex , ey , and ez are 5 times the corresponding
rms emittances.

The equations of motion for a test particle in the pres-
ence of a uniformly charged core and constant external
fields, neglecting acceleration, are given by

d2x
dz2

1 k2
x0x 2 Ix�rx , ry , rz, s�x � 0 , (7)

d2y
dz2 1 k2

y0y 2 Iy�rx , ry , rz, s�y � 0 , (8)
064201-3
d2Dz
dz2 2 kj�cos�2khDz 1 fs� 2 cos�fs�� 2

Iz�rx , ry , rz, s�Dz � 0 ,
(9)

where kj � qE0T�mc2b2g3, and where the parameter s
is zero for a particle inside the core and is determined
from the root of equation

x2

r2
x 1 s

1
y2

r2
y 1 s

1
Dz2

r2
z 1 s

� 1 , (10)

for a particle outside the core.
The above envelope equations and test particle

equations constitute the basis of the three-dimensional
particle-core model with a uniform core. In the numerical
calculation, it is more convenient to use dimensionless
equations. Letting ri � ri0Ri, i � x, y, z, where ri0

is the matched core size, and t � kx0z, we obtain the
dimensionless envelope equations as

R00
x 1 Rx 2 �1 2 h2

x �
Îx�0�

RyRzÎx0
2

h2
x

R3
x

� 0 , (11)

R00
y 1

k2
y0

k2
x0

∑
Ry 2 �1 2 h2

y �
RxÎy�0�
R2

yRz Îy0
2

h2
y

R3
y

∏
� 0 ,

(12)

R00
z 1

k2
z0

k2
x0

∑
fRz 2 �f0 2 h2

z �
RxÎz�0�
RyR2

z Îz0
2

h2
z

R3
z

∏
� 0 ,

(13)

with
Î�Rx , Ry , Rz , s�i �
Z `

s

dt

�1 1 Ei�
q

�1 1 t� �1 1 tr2
x0R2

x��r2
y0R2

y �� �1 1 tr2
x0R2

x��g2r2
z0R2

z ��
, (14)
where E1 � 1, E2 � r2
x0R2

x�r2
y0R2

y , E3 � r2
x0R2

x�g2r2
z0R2

z ,
and the integrals Îi0 are calculated for a matched beam
core, Rx � Ry � Rz � 1. The tune depressions hx , hy ,
and hz are defined as

h2
x �

k2
x0 2 Ix0

k2
x0

, (15)

h2
y �

k2
y0 2 Iy0

k2
y0

, (16)

h2
z �

f0k2
z0 2 Iz0

k2
z0

, (17)

where f0 is the rf nonlinear focusing factor calculated
with the matched core size. These three tune depres-
sions can be related to each other using the following
expressions:

k2
y0

k2
x0

1 2 h2
y

1 2 h2
x

�
r2

x0

r2
y0

Îy0

Îx0
, (18)

k2
z0

k2
x0

f0 2 h2
z

1 2 h2
x

�
r2

x0

g2r2
z0

Îz0

Îx0
. (19)

For the equations of motion of test particles, we
define the dimensionless variables as X � x�rx0, Y �
y�ry0, and Z � Dz�grz0. The dimensionless equations
of motion are

X 00 1 X 2 X�1 2 h2
x �

Îx�s�
RxRyRzÎx0

� 0 , (20)

Y 00 1 Y
k2

y 0

k2
x0

∑
1 2 �1 2 h2

y �
RxÎy�s�
R3

yRzÎy0

∏
� 0 , (21)
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Z00 2 kj�cos�2khgrz0Z 1 fs� 2 cos�fs����k2
x0grz0� 2 Z

k2
z0

k2
x0

�f0 2 h2
z �

RxÎz�s�
RyR3

z Îz0
� 0 , (22)
where the parameter s in the integrals Îi , i � x, y, z, is
zero for particles inside the core and is the root of the
following equation:

X2�R2
x

1 1 s
1

�Y2�R2
x� �r2

y0�r2
z0�

�R2
y�R2

x � �r2
y0�r2

z0� 1 s
1

�Z2�R2
x � ��grz0�2�r2

x0�
�R2

y�R2
x � ��grz0�2�r2

x0� 1 s
� 1 , (23)

for the particle outside the core. This group of coupled
nonlinear ordinary differential equations is solved numeri-
cally using a leap-frog algorithm.
III. LINEAR ENVELOPE MODES

The steady state solution of the envelope equations has
three components which define the stationary core size. If
the initial size of the beam is the same as the stationary
core size, the beam is said to be matched and the core size
will stay constant. If there exists a difference between the
initial beam core size and the stationary beam core size,
the beam is said to be mismatched and, if the mismatch
is small, three linear eigenmodes of the core envelope
may be excited. To obtain the oscillation wave number
of these modes, we have used the following linearized
envelope equations:
dR00
x 1 �4h2

x 1 3�1 2 h2
x�Fxx�Îx0�dRx 1 �1 2 h2

x �Fxy�Îx0dRy 1 �1 2 h2
x �Fxz�Îx0dRz � 0 , (24)

dR00
y 1 k2

y0�k2
x0��4h2

y 1 3�1 2 h2
y �Fyy�Îy0�dRy 1 �1 2 h2

y �Fxy�Îy0dRx 1 �1 2 h2
y�Fyz�Îy0dRz� � 0 , (25)

dR00
z 1 k2

z0�k2
x0

Ω∑
4h2

z 1 3�f0 2 h2
z �Fzz�Îz0 1

≠f�rz0�
≠rz

rz0

∏
dRz

1 �f0 2 h2
z �Fxz�Îz0dRx 1 �f0 2 h2

z �Fyz�Îz0dRy

æ
� 0 , (26)

with

Fxx �
Z `

0

dt

�1 1 t�5�2�1 1 tr2
x0�r2

y0�1�2�1 1 tr2
x0�g2r2

z0�1�2
, (27)

Fyy �
Z `

0

dt

�1 1 t�1�2�1 1 tr2
x0�r2

y0�5�2�1 1 tr2
x0�g2r2

z0�1�2
, (28)

Fzz �
Z `

0

dt

�1 1 t�1�2�1 1 tr2
x0�r2

y0�1�2�1 1 tr2
x0�g2r2

z0�5�2
, (29)

Fxy �
Z `

0

dt

�1 1 t�3�2�1 1 tr2
x0�r2

y0�3�2�1 1 tr2
x0�g2r2

z0�1�2
, (30)

Fxz �
Z `

0

dt

�1 1 t�3�2�1 1 tr2
x0�r2

y0�1�2�1 1 tr2
x0�g2r2

z0�3�2
, (31)

Fyz �
Z `

0

dt

�1 1 t�1�2�1 1 tr2
x0�r2

y0�3�2�1 1 tr2
x0�g2r2

z0�3�2
, (32)
where the mismatched envelope Ri � Ri0 1 dRi, i �
x, y, z, and dRi�Ri0 ø 1. For a matched beam, Ri0 �
1.0. From the above linear ordinary differential equa-
tions, we can find the eigenmodes of mismatched core
oscillation by using the ansatz dRj � exp�ikjt�. For the
physical parameters given in Table I, we get the normal-
ized wave number 1.945 for the high frequency mode,
1.641 for the low frequency mode, and 1.456 for the
quadrupole mode. As a verification of our calculation,
we also computed the mode wave number through a
Fourier analysis of mismatched envelope equations. Fig-
ure 1 shows the t-dependent envelopes for Rx , Ry , and
Rz with initial mismatch dRx � 0.01, dRy � 20.05, and
dRz � 0.008. The power spectra for the above envelopes
are presented in Fig. 2. The normalized wave number for
the high mode is 1.941, for the low mode it is 1.642,
and for the quadrupole mode it is 1.452. These wave
numbers agree very well with the calculations from the
064201-4
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FIG. 1. The t-dependent envelopes for Rx , Ry , and Rz
with initial mismatch dRx � 0.01, dRy � 20.05, and
dRz � 0.008.

linear eigenmode analysis. In Fig. 2 we also note that the
quadrupole mode involves only transverse oscillation (i.e.,
dRz � 0 in the power spectrum around 1.452).

To investigate the possible resonance between test par-
ticles and the mismatched core oscillation, we calculated
the ratio of the possible test particle wave numbers to
the mismatched mode wave number as a function of cur-
rent with all the other physical parameters as shown in
Table I. The results for the transverse betatron motion are
given in Fig. 3. It shows that a 1:2 resonance between a
test particle and the low mode and quadrupole mode is
always possible. For the high mode, the 1:2 resonance is
possible with a current greater than 40 mA. With increas-
ing current, other higher-order resonances are also pos-
sible. At a current of 100 mA, the 1:2 resonance between
the betatron motion of test particles and all three mis-
match modes is present. Figure 4 shows the ratio between
the wave number of particle synchrotron motion and the

FIG. 2. The power spectra for the envelopes Rx , Ry , and Rz
with initial mismatch dRx � 0.01, dRy � 20.05, and dRz �
0.008.
064201-5
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FIG. 3. The ratio of particle betatron wave number to mode
wave number as a function of current.

wave number of the high mode and the low mode. Here,
the 1:2 resonance with the high mode is excited when
the current is greater than 60 mA. The 1:2 resonance
with the low mode is only present at currents greater than
230 mA. This is different from some previous studies
where the 1:2 resonance occurs regardless of the beam
current. This is because, in the previous studies with lin-
ear focusing, the ratio of the test particle wave number to
the envelope mode wave number always starts from 0.5
with zero current. For the nonlinear focusing, this ratio
can be greater than 0.5 for zero current. This suggests
that there exists some current region without the 1:2 reso-
nance in the longitudinal plane, which is observed in this
study and the study of Barnard et al. [17]. In Fig. 5, we
show the ratio of relative amplitude of longitudinal os-
cillation to that of transverse oscillation, dRz�dRx, for
the high mode and the low mode as a function of cur-
rent. For the high mode, the oscillation is predominantly
longitudinal at low current and is in phase with the trans-
verse oscillation. Furthermore, the dominance decreases
with increasing current. For the low mode, the oscillation

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

K
p/

K
m

I (A)

high mode
low mode

FIG. 4. The ratio between the wave number of particle
synchrotron motion and the wave number of the high mode
and the low mode as a function of current.
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FIG. 5. The ratio of relative amplitude of longitudinal oscil-
lation to that of transverse oscillation, dRz�dRx, for the high
mode and the low mode as a function of current.

is predominantly transverse at low current and is out of
phase with the longitudinal oscillation. Once again, the
dominance decreases with increasing current.

The dominance of the longitudinal (transverse) oscil-
lation in the high (low) mode is different from that
observed in previous studies because, unlike previous
studies, our physical parameters have a longitudinal
focusing strength that is about the same as the transverse
focusing strength at zero current [12,17]. Figure 6 shows
the quantity dRz�dRx as a function of the focusing
strength ratio, kz0�kx0, with all the other physical pa-
rameters in Table I fixed. We see that, for the high
mode, dRz�dRx quickly decreases when kz0�kx0 , 1.
Conversely, for the low mode, dRz�dRx quickly in-
creases (in absolute value) when kz0�kx0 , 1. This
significantly changes the role that the low mode might
play in the longitudinal beam halo dynamics. The ratio
of longitudinal-to-transverse emittance in Table I is 2.05.

FIG. 6. The ratio of relative amplitude of longitudinal oscilla-
tion to that of transverse oscillation, dRz�dRx , as a function of
the focusing strength ratio kz0�kx0.
064201-6
FIG. 7. The ratio of relative amplitude of longitudinal oscilla-
tion to that of transverse oscillation, dRz�dRx, as a function of
the current for an ellipsoidal bunched beam without azimuthal
symmetry.

To see the potential effects of emittance ratio on the char-
acteristics of the envelope modes, we also show in Fig. 6
the relative oscillation amplitude, dRz�dRx, as a function
focusing strength ratio for two values of emittance ratio,
2.05 and 1.0. It shows that, for these parameters, the
relative oscillation amplitude is only weakly dependent on
the emittance ratio.

In the above section, we discussed the properties of the
linear envelope modes for a bunched beam with azimuthal
symmetry. To study the effect of azimuthal asymmetry,
we have also analyzed the modes using the parameters of
Table I but with the x emittance equal to 0.3 times the
y emittance shown in the table. For these parameters,
the ratio of the x size to y size varies from 0.57 to
0.92 as current rises from 0.01 to 0.29 A. Figure 7
shows the quantity dRz�dRx of the three eigenmodes
as a function of the current. Comparing with Fig. 5,
we see that the high mode and the low mode exhibit
a similar trend with and without azimuthal symmetry.
However, the quadrupole mode from the azimuthally
symmetric bunched beam no longer exists due to the
presence of a longitudinal component. The phase of
this longitudinal component depends on the ratio of
longitudinal-to-transverse focusing strength and the ratio
of x to y emittance.

IV. TEST PARTICLE DYNAMICS UNDER THREE
ENVELOPE MODES

A test particle in the particle-core model will feel both
the external focusing force and the Coulomb force from the
core. An initially matched core will have a constant radius
in all three dimensions, and a test particle may move in-
side and outside of the core without a net change in energy.
When the core is initially mismatched, the three eigen-
modes can be excited. In this case, test particles starting
064201-6



PRST-AB 3 BEAM HALO STUDIES USING A THREE-DIMENSIONAL … 064201 (2000)
from different initial phase space locations will have dif-
ferent patterns in phase space. When the ratio of test par-
ticle wave number to core envelope mode wave number
is rational, a resonance between the test particle and core
will be excited. Among these resonances, we are most
interested in the 1:2 resonance. This is because this low
order resonance will have a large oscillation amplitude and
is generally found to be responsible for the generation of
beam halo. The motion of a test particle under different
envelope modes may show different behaviors. To under-
stand the potential effects of these envelope modes on the
test particle dynamics and beam halo formation, we use
stroboscopic maps to study the test particle dynamics with
only one envelope mode excited each time. The physi-
cal parameters are given in Table I. We have also con-
sidered only test particles with zero angular momentum.
Figure 8(a) shows the stroboscopic plot in the X-X 0 plane
under the high mode with a 20% initial transverse mis-
match (and the corresponding 38% longitudinal mismatch
needed to excite the high mode and 6.7% longitudinal mis-
match for the low mode). Figures 8(b) and 8(c) show
analogous plots of the X-X 0 plane under the low mode
and the quadrupole mode, respectively. In all the plots,
we have strobed the test particle phase trajectory at the
minimum of the horizontal oscillation of the core radius,
i.e., the minimum of dRx , since the extent of the resonant
region in the figures is maximum at this point. Four re-
gions are identified in Fig. 8. The first is the core region
enclosed by the innermost circle that is determined by the
envelope equation. The test particles initially starting in
this region will be confined inside this region. The second
region is between the core and the resonant region, and
includes a separatrix. In the case of low current, the sepa-
ratrix will confine particles. As the current increases, the
separatrix will deteriorate and a stochastic sea will form
around it [8]. The trajectories of particles starting from
this region depend very sensitively on their initial condi-
tions. These particles can move through the chaotic sea, at
a rate governed by the maximum Lyapunov exponent, to
large amplitude and to contribute to the formation of beam
halo. The third region is the parametric resonance region.
The test particles in this region will move to large ampli-
tude due to the parametric resonance with core. The last
region is the outermost region involving large-amplitude,
betatronlike motion. Particles in this region will be part
of the halo, but, in this model, particles cannot reach this
region from elsewhere due to the presence of Kolmogorov-
Arnold-Moser curves.

The peanut structure on the x-px plane suggests that
the 1:2 resonance between test particles and the core en-
velope oscillation exists for all three modes. This is in
agreement with the linear mode analysis in the last sec-
tion for 100 mA beam current (see Fig. 3). Particles in
the resonance region can move to very large amplitude to
form halo particles. This will limit the minimum aper-
ture that can be used in the accelerator design. For the
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FIG. 8. (a) The stroboscopic plot in the X-X 0 plane under
(a) the high mode, (b) the low mode, and (c) the quadrupole
mode with a 20% initial transverse mismatch.

case of the high mode resonance, the outer edge of the
1:2 resonance is more than 5.0 units (i.e., 5 times the
matched edge radius), which is much larger than the 1:2
resonance outer edges of the low mode and quadrupole
mode. Thus, among the three resonances, the particle-
high mode resonance is the most serious in regard to
064201-7
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maximum particle amplitude. On the other hand, the
particle-high mode resonance also has the largest separa-
tion between the core and resonant regions in transverse
phase space compared with the other modes. This means
that, for high mode excitation, it will be more difficult for
particles initially inside the core to reach the resonance
region.

It is noteworthy that, for these parameters, the ampli-
tude of the high mode resonance (which is 5 units) is
larger than that which has been found in previous studies
(typically 2–3 units for a spherical particle-core model;
see, for example, Refs. [12,13,17]). Hofmann has pointed
out that such large halo amplitudes are possible if the zero
current longitudinal focusing strength is greater than the
zero current transverse strength [25], as is the case of
the present study. We have also verified that, for smaller
transverse mismatches (as low as 5%), the high mode am-
plitude is still approximately 4 units. However, as will
be shown below, the high mode amplitude is greatly re-
duced (to approximately 2 units) as the focusing strength
ratio approaches 0.6, which is consistent with previous
studies.
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FIG. 9. The stroboscopic plot in the Z-Z 0 plane under (a) the
high mode and (b) the low mode with a 20% initial transverse
mismatch.
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Turning to the quadrupole mode, this resonance is
of the least concern with regard to maximum ampli-
tude. In Fig. 8(c), the outer edge of the resonance
is less than 2 units, which is the smallest among the
three resonances. However, the separation between
the core and the resonance is also smallest for the
quadrupole mode. This suggests that particles initially
inside the core are more likely to reach the resonance
region [25].

In Figs. 9(a) and 9(b), we show stroboscopic plots of
synchrotron motion in longitudinal phase space, Z-Z0,
for the low mode and the high mode. As mentioned
previously, the rf nonlinearity causes the 1:2 resonance
in the longitudinal plane to vanish in the low current
regime [17]. This is why the 1:2 resonance appears
only in the high mode [Fig. 9(a)]. Since the parametric
resonance is a major mechanism of beam halo formation,
this suggests that the high mode resonance will also be
responsible for longitudinal beam halo formation under
the physical parameters in Table I. The stroboscopic
plots in Fig. 9(a) are not symmetric with respect to
Z � 0 due to nonlinear rf focusing effect. The 1:2
resonance between the particle and the high mode shows a
somewhat different structure compared with the transverse
resonance shown in Fig. 8(a). The resonant regions are
smaller, and particles can move to larger amplitude before
reaching the resonance region. The inner edge of the
resonance extends to 1.6 units, and the outer edge reaches
around 2.0 units.

From the analysis of the last section, the variation
of the ratio of longitudinal focusing strength to trans-
verse focusing strength can change the role played by the
high mode and the low mode in longitudinal beam halo
formation. The following shows test particle dynamics
under three envelope modes with the focusing strength
ratio equal to 0.634 and all the other physical parame-
ters as shown in Table I. The stroboscopic plots of the
transverse phase space for the high mode, low mode,
and quadrupole mode are given in Figs. 10(a), 10(b), and
10(c), respectively, with 5% initial transverse mismatch
and 0.44% longitudinal mismatch for the high mode and
18% mismatch for the low mode. No 1:2 resonance is ob-
served for the low mode in Fig. 10(b). The resonance ex-
tent for the quadrupole mode is about 1.5, which presents
little danger for the machine design and operation. The
outer edge of the high mode resonance in Fig. 10(a)
reaches 2.1, which is more dangerous than the quadrupole
mode resonance, but it is considerably smaller than the
5 unit amplitude seen in Fig. 8(a). Stroboscopic plots of
the longitudinal phase space for the high mode and the
low mode are given in Figs. 11(a) and 11(b), respectively.
Here, the 1:2 resonance in the low mode has a maximum
extent of 2.0 units. The 1:3 resonance is evident in the
high mode. Comparing with the 1:2 resonance of the low
mode, the 1:3 resonance has smaller amplitude and will be
more difficult to populate by the particles initially inside
064201-8
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FIG. 10. The stroboscopic plot in the X-X 0 plane under (a) the
high mode, (b) the low mode, and (c) the quadrupole mode with
a 5% initial transverse mismatch, with focusing strength ratio
kz0�kx0 � 0.634.

the core. This suggests that, with a low ratio of longitu-
dinal focusing to transverse focusing, the low-mode reso-
nance will be a primary contributor to the formation of
longitudinal halo.
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FIG. 11. The stroboscopic plot in the Z-Z 0 plane under (a) the
high mode and (b) the low mode with a 5% initial transverse
mismatch with focusing strength ratio kz0�kx0 � 0.634.

V. CONCLUSIONS

We have used a three-dimensional particle-core model
to study particle dynamics in the presence of a mismatched
ellipsoidal bunched beam and its impact on halo forma-
tion. Under the smooth approximation, we have used
a linear transverse magnetic field to represent the aver-
age effect of an alternating gradient focusing channel.
The nonlinear rf field in the rf gap is modeled by a
continuous sinusoidal wave to represent the average ef-
fect of the synchronous rf wave, and acceleration through
the rf gap is neglected. Three linear envelope modes,
a high frequency mode, a low frequency mode, and a
quadrupole mode, are identified for an azimuthally sym-
metric bunched beam. We have performed a systematic
study of the features of the modes as a function of the
longitudinal-to-transverse focusing strength ratio. We find
that, as the ratio approaches unity, the oscillation of the
high frequency mode contains a significant longitudinal
component. The situation is reversed when the focus-
ing strength ratio is sufficiently reduced, as has been the
case in previous beam halo studies. Since the longitudinal
064201-9
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and transverse focusing strengths are comparable in some
designs of future high current linacs, this previously un-
recognized property of the high frequency mode is an im-
portant factor for longitudinal beam halo formation. For
the case of an ellipsoidal bunched beam without azimuthal
symmetry, we find that the high frequency mode and the
low mode are still present. However, the quadrupole mode
is replaced by a new mode with transverse components
180± out of phase and a nonzero longitudinal component.
In addition to studying the mode properties as a function of
focusing strength ratio, we have examined the features of
the modes in phase space using stroboscopic plots. When
the high frequency mode is excited, a 1:2 resonance be-
tween the mode and test particles is present in both the
transverse and longitudinal phase spaces; when the low fre-
quency mode is excited, the resonance is only present in the
transverse phase space when the transverse to longitudinal
focusing strength ratio is close to 1. Also, the amplitude of
the transverse resonance associated with the high mode is
the largest of all three modes, making it the mode of great-
est concern in regard to its impact on the size of the beam
aperture. For the physical parameters given in Table I, the
transverse amplitude of the high mode with a 20% initial
transverse mismatch is roughly 5 times the matched beam
size. By changing the parameters, we have observed even
larger amplitudes. This large halo amplitude can have a
significant impact on the design of high-intensity ion accel-
erators where the longitudinal-to-transverse focusing ratio
is slightly greater than unity. Besides the issue of maxi-
mum particle amplitude, another important property of the
modes is the separation between the core and the resonance
region, since this has implications on the ability of particles
initially in the core to reach the resonance. We find that,
of all three modes, the quadrupole mode has the smallest
such separation. Thus, though the quadrupole mode does
not, by itself, lead to large amplitude particles, it may be
the first step in a process, involving other modes, by which
halo formation occurs.
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