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Abstract

In this paper, we present a three-dimensional Poisson equation solver for the electrostatic potential of a charged beam with
large longitudinal to transverse aspect ratio in a stra@gitt a bent conducting pipe with open-end boundary conditions. In
this solver, we have used a Hermite—Gaussian series to represent the longitudinal spatial dependence of the charge density
and the electric potential. Using the Hermite—Gaussian approximation, the original three-dimensional Poisson equation has
been reduced into a group of coupled two-dimensional partial differential equations with the coupling strength proportional
to the inverse square of the longitudinal-to-transverse aspect ratio. For a large aspect ratio, the coupling is weak. These two-
dimensional partial differential equations can be solved independently using an iterative approach. The iterations converge
quickly due to the large aspect ratio of the beam. For a transverse round conducting pipe, the two-dimensional Poisson equation
is solved using a Bessel function approximation and a Fourier function approximation. The three-dimensional Poisson solver
can have important applications in the study of the space-cledigets in the high intensity proton storage ring accelerator or
induction linear accelerator for heavy ion fusion where the ratio of bunch length to the transverse size is large.
0 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Solving the three-dimensional (3D) Poisson equation for the electrostatic potential of a charged long beam
bunch in a conducting pipe has important applicationseam dynamics studies ofodern accelerator physics.
Recently, there has been increasing interest in utilizingy imgensity beams for future accelerator applications,
e.g., accelerator-driven spallation neutron sourddS)$ and Fermilab booster accelerator upgrade. In these
applications, the nonlinear space-chdayees from the charged particle indetions can cause particle loss, which
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results in the radioactivation of the accalrs. To minimize particle losses |fseonsistent particle-in-cell (PIC)
models have been developed to simuldtarged particle motion in the acceleratfis3]. These models include

both the space-charge forces from the beam and the finmascomplex external fiekl To calculate the space-
charge forces, we must solve the Poisson equation for a given charge density distribution. A key issue in the PIC
simulations is to solve the Poisson equation effitigrat each time step, subject to the appropriate boundary
conditions. In many applications, the computation of the electrostatic potential of a long bunch beam inside a
conducting pipe with open-ends is of particular importance.

In previous studies, a number of methods for solving Poisson’s equation in a closed computational domain have
been studied4-8]. To use these methods for solving the Poisson equation in a conducing pipe with open-end
boundary conditions requires adg@ computation domain so that the pdtahvanishes at the ends of the domain.

This is inefficient for beam dynamics studies, since only the potential inside the beam is needed. Furthermore,
the choice of computational domain is not straightforhand usually requires solving Poisson’s equation twice to
ensure that the computational domain is large enough. An efficient method has been proposed in our previous study
using a boundary matching proced{8t However, that method used a finite difference scheme for the longitudinal
discretization. For a long bunch with very large longitudinal to transverse aspect ratie, 2af), the use of a finite
difference method in the longitudinakdction is computationally efficient.df example, in the SNS accelerator, the

beam has a longitudinal size of order of 100 meters while the transverse size of the beam is only a few centimeters.
Putting a computational mesh on such a beam would reguinee number of grid poiatongitudinally in order to

get sufficient resolution. On the other hand, the spéétinction approximation can have a much higher accuracy

than the finite difference approximation. The open boundaryditions that the electric potential disappears at
infinite distance leads to a natural choice of the Hermite—Gaussian function as a basis function. After approximating
the longitudinal dependence of the electric potential and the charge density distribution using a Hermite—Gaussian
series, we obtain a group of coupled two-dimensional (2D) partial differential equations (PDESs). Solving these
coupled two-dimensional PDEs presents the same cfugdlas the original 3D Poisson equation. Fortunately, for

a beam with large aspect ratio, the coupling strength of these two-dimensional PDEs is proportional to the inverse
square of the aspect ratio. This suggests that for a beam with a large aspect ratio, the coupling between individual
2D PDEs for each longitudinal mode is weak. We have useitieaative approach andeated the coupling terms

as source terms. This reduces the original 3D Poisson equation to a group of 2D Poisson equations. The iteration
converges very quickly due to the weak coupling resulting from a large aspect ratio. The resulting two-dimensional
Poisson equations are solved using a Bessel function and a Fourier function approximation in a transverse round
conducting pipe. For a charged beam bunch in a bent ceimdugipe, e.g., in storage ring accelerator, we have
written the 3D Poisson equation in Frenet—Serret coordinates. The contribution from the curved structure has
a multiplier proportional to the ratio of pipe transvesee to the curvature radius. For most accelerators with
curvature radius varying from 1 to 1000 meters, this ratio would be of ordet tt010-°. Again this term can be

treated as a perturbative source temthe above iterative approach and the iteration converges quickly.

The organization of this paper is as follows: The physical model and numerical methods are described in
Section 2 The numerical tests of the 3D Poisson solver are present8edtion 3 The conclusions are drawn
in Section 4

2. Numerical methods

We first discuss the solution of the 3D Poisson equation in a straight conducting pipe. For a pipe with circular
cross-section, we write the dimensionless Poisson equation in cylindrical coordinates as:
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Here,¢ denotes the dimensionless electrostatic potentitie dimensionless charge density functioandz the
dimensionless radiahal longitudinal distance. The boungtaonditions for the potential are:

¢(r=1,0,72) =0, (2)
¢(r,0 +2m,2) =¢(r,0,2), (3)
¢(r,0,z7==100)=0. (4)

Here, we have chosen the radial pipe radiuss the length scale so that the radial boundary condition is set at
r = 1. The charge density and electrostatic potentigl can be approximated using a Hermite—Gaussian series
along thez-axis so that the longidinal boundary conditions iRq. (4)are naturally satisfied.

N
p(r.0,2) =Y pu(r,0)Hy(2), )
n=0
N
¢(r,60,2) = ¢u(r,0)Hu(2). (6)
n=0
The scaled Hermite—Gaussian functiip is defined as
z 122
Hn(Z) = Hn(z> eXp<_§ﬁ> (7)

where A is the dimensionless longitudinal scaling constant, which is the longitudinal to transverse aspect ratio,
A = o, /a with o, the longitudinal beam rms sizé{, is the nth order Hermite polynomial with properties:
Ho(z) =1, Hi(z) =2z, ..., H,(z) = 2zH,_1 — 2(n — 1)H,_». The scaled Hermite—Gaussian functithhas

the properties:

/ Hn(2)Hm (2) dz = 2"n!/7w Ay, (8)

PH, 1 nn—1) 2n+1
2 aaz 2t T T2

wheres,,, = 1 form =n ands,,, = 0 form # n. The expansion coefficients and¢, can be obtained from

Hy 9)

o]

1

Pn(he):m/P(V,Q,Z)Hn(Z)dz, (10)
17 .

¢n(”,9)=mf¢(h9,Z)Hn(Z) z. (11)

Substituting the functiong and¢ into the 3D Poissorquation (1) and using the orthogonality of the scaled
Hermite—Gaussian functions aid. (9) the 3D Poisson equation is reduced to a group of coupled 2D PDEs with
each equation satisfying

—Pn (12)

1 1 1
Vi‘pn + <Z¢iz—2 - E(Zn +Dpp+ (n+2)(n+ 1)¢n+2> ﬁ —

wherevi is the transverse Laplace operator
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Eq. (12)is a group of coupled two-dimensional parti@ferential equations. Each longitudinal modés coupled

to the mode: — 2 andn + 2 with a coupling multiplier 2A2. For a large longitudinal to transverse aspect ratjo

the coupling between different modes is weak. The contributions from the coupling modes in the second term
of Eqg. (12)can be treated as a perturbative source term usintpeative approach. The detailed procedure is as
follows:

V2l =—p,, (13)

V22 =—p, — (}pl —<2n + D+ 4+ + 1)¢n+2> Ai (14)
1 1

V23 =—p, — ( 4¢>2 <2n + D2+ (n+2)(n + 1>¢,,+2) e (15)

Here, the superscript of the electric potengialenotes the iteration number. For a large aspect ratitbe ¢, will
converge to the solution &q. (12)within a few iterations.

During each iteration, we need to solve a two-dimenal Poisson equation with the updated source term.
The periodic boundary conditiooff the potential along the direction suggests the use of a complex exponential
eigenfunction in that direction. A Bessel function is an apiate eigenfunction in the radial direction for a round
conducting pipe. Hence, we can approximate the potefittadd source termp as follows,

Nm/zfl Ny

pn(r,0) =" > " I (vimr) €XP(—im), (16)
m=—Np /2 I=1
Np/2-1 N,

G0 =" D BN I (yimr) €XP(—im0) (17)

m=—Np /2 =1

wherey,, is a solution of

Im (Yim) = 0. (18)
The p/™ and¢/™ are determined from

27 1
P = 2;/[p,,(r,e)exp(ime)rjm(y,mr)drde, (19)
7Tt (Vim)
27 1
pim = 27 / / b (r, 0) eXpimO)F Jy (yimr) dr do. (20)
J/ Yim)

For the first iteration, multiplyindeq. (13)by expimé)r J,, (vinr) and integrating from 0 tos;2 and from 0 to 1,
we obtain

" = P" Vi (21)
A similar expansion can be applied to the next iterations except that the source terms in the two-dimensional
Poisson equation include the contributions from the charge density functions and from the electric potentials
calculated in the last iteration.
For the charged beam in a bent conducting pipe, thetetal potential will have the same boundary conditions
as that in the straight pipe except that in this case the longitudinal coordinate is related to the arc length along
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Fig. 1. A schematic plot of the chagd patrticles inside a bent pipe.

the bend. A schematic plot of the charged particles inside a bent conducting pipe is shéignlinrhe bending
radiusR is large compared with the transverse pipe radiu$he bunch length of the charged particles is also
significantly larger than the pipe radius. Using Frenet—Serret coordinates, the dimensionless 3D Poisson equation
can be rewritten as
V3¢ + 1t (cos(e)
LT R g0)
R1+ %
Here, R = Rp/a is the normalized curvature radius witty the physical curvature radius. Approximating the
electric potentialp and charge density in the longitudinal direction by the scaled Hermit—Gaussian series, we
obtain for each mode a group of coupled two-dimensional partial equations simild&ds. (13)—(15)

dp _ sin(o) %) R S —p. (22)
(

. cog0)\2 9,2
or roor 1+ VT) 0z

1 dgn  SIN®) I
2 n
Vient Ew(cc’“@) or - or
R
1 ! 1 2n+1 2 1 1 _ 23
+(1+r7cost))2 Z¢n—2—§( n+ ey + (n+2)(n + Ddpy2 =P (23)
These equations can be solved using an iterative procedure:
Vi(]ﬁi‘ = —Pn, (24)
1 1 apl  sin®) dgl
2.2 - - n _ 20V n
Vl(pn = —Pn Ri+ 7 Cos0) (COX@) ar . ar
R
1., 1 1 1 1 1
R
1 a2 sin() d¢?
2.3 __ _ _ = n n
Vi, =—pn R 14 rcost) 0) (COS(G) ar Y or
R
1, 1 5 2 1 1
R

Now there are two parameters,R and 1/ A2, affecting the convergence of the iteration. For most high intensity
storage ring accelerators, the physical curvature isr@éi0100 meters while the transverse pipe radius is about
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several centimeters. This leads Roin the range of 1000-10000. For a long bunch which normally occupies a
fraction of the ring, the above iteratidor each mode will converge quickly.

3. Numerical tests

The numerical algorithms discussedthe preceding section are tested gsrnGaussian charge distribution in a
round conducting pipe. The Gaussian distribution closely approximates the charged particle distribution observed
in real accelerator operation. For the convenience ofpanrison with the Green function solution in a straight
conducting pipe, we assume that the beam is axisymmetric. The charge density function is given as

p(r,z)= {exq (012 + AZ)) r<1 27)
r> 1.

Here, the beam has a normalized transverse rms slzar@ a normalized longitudinal rms siZe In a straight

conducting pipe, the analytical solution for the axisymmetrical Poisson equation using a Green function method is

given by

OO

(0 = — 3 Jolnr) / / Jo(Bars) €XP(—Bulz — 251) p(rs. 2y)rs dry dzy (28)

aeo anjlz( n)

whereJo(a;,) = 0 andg,a = «;, [10].
To see the effects of the longitudinal-to-transverse aspect ratio on the convergence of the coupled two-
dimensional Poisson’s equations, we have givelim 2 the iteration error as a function of iteration number
for aspect ratioA = 2, 10,100, 1000 using the charge distribution q. (27) Here the iteration error at stép
is defined asEr; = Y (14 (r, 2) — ¢i1(r, 2)| with initial $? = 0.0, where| | denotes the norm 1 of a matrix.
We see that with increase of the aspect ratio, the iterati@ncbnverged rapidly. For even a moderate aspect ratio
A =10, it takes less than 10 iterations to reach an iteration errofLt this test, the longitudinal mode number
for the scaled Hermite—Gaussian series is 10. The longitudinal mode number required for the solution of the above
example depends on the size of aspect ratigig. 3shows the normalized electric potential as a function of
the axis from the numerical solution with maximum longitudinal mode number 2, 6, and 10, for aspegt+afio
(left) andA = 10 (right). In this figure, we also show the solutioom the analytical Greefunction calculation for
comparison. We see that for small aspect rdtie: 2, as the Hermite—Gaussian mode number increases from 2 to
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Fig. 2. The norm 1 errors as a function of iteration number for aspectas®, 10, 100, 1000.
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Fig. 3. The normalized electric potential as a function of the axis with Hermite—Gaussian mode number 2, 6, and 10 for aspect ratl
(left) and 10 (right).
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Fig. 4. The normalized electric potential as a function af» =0, 0.25, 05, and 075, and as a function of (right) atz = 0 and 18754 with
A =10 together with the Green function solution.

10, the numerical solutions gradually approach the Green function solution. For aspedt+ati®, the numerical
solutions from all three maximum mode numbers are in excellent agreement with the Green function solution. In
Fig. 4, we give a comparison of the numerical solutions and the Green function solutions as a fungtjtaitpht

r =0, 0.25, 05, and 075, and as a function of (right) atz = 0 and 1875 A with A = 10 in the above example.

We see that the two approaches agree very well at edltions. However, the Green function approach is much
slower than the numerical method which we proposed here.

The numerical algorithm for a long bunch in the bent conducting pipe has also been tested using the Gaussian
charge distribution given ifcq. (27) Fig. 5 shows the iteration error as a function of iteration number for the
normalized curvature radiug = 2, 5, 10, and 100. The longitudinal-to-transverse aspect ratio is 10 in this case
with maximum longitudinal Hermite—Gaussian mode number 10. As the curvature radius increases, the iteration
converges quickly. Comparing wiffig. 2, we see that the convergence with increasing curvature radius is not as
fast as that with increasing aspect raio This is because that the contritmris from the curvature term in the
preceding iteration scale agR for a fixed aspect ratio in the bent pipe while contributions from the coupling
term scale as/1A2 in the straight conducting pip€ig. 6 gives the numerical solutions of the normalized electric
potential as a function aof (left) at» = 0.5 and as a function of (right) on the axis forR = 2, 5, 10, 100 in a
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Fig. 5. The norm 1 errors as a function of iteratioumber for the normalized curvature raditis= 2, 5, 10, and 100.
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Fig. 6. The numerical solutions of the mealized electric potential as a function pfleft) at» = 0.5 and as a function of (right) on axis for
R =2,5,10,100 in a bent conducting pipe together with the solutions from a straight pipe.

bent conducting pipe together with the solutions for a straight pipe. We see that as the curvature radius increases,
the numerical solutions in the bent conducting pipe gradually approach those in the straight pipes E00 in a

bent pipe, there is little difference between the two sohsi This suggests that for large curvature radius as used

in most store ring accelerators, theesff of the curvature is very weak in the solution of the 3D Poisson equation.

4. Conclusions

In this paper, we have presented a three-dimensional Poisson solver for the electrostatic potential of a charged
beam in a straight and a bent conducting pipe with opehbernndary conditions. Using a Hermite—Gaussian series
to represent the longitudinal dependence of the electric potential and charge density distribution, the original three-
dimensional Poisson equation is reduced to a groupopled two-dimensional PDEs. With large longitudinal-
to-transverse aspect ratio, the coupling is weak. The resulting two-dimensional PDEs can be solved independently
using an iterative approach, which converges rapidly (within a couple of iterations). The same iterative procedure
is also used to solve the three-dimensional Poisson equation in a bent conducting pipe. The rate of convergence in
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this case depends on both the bunch aspect ratio and the normalized curvature radius. For the physical applications
in most accelerators, both the aspect ratio and the naethturvature radius are large enough to guarantee fast
convergence of the iteration. In the solution of thetdimensional Poisson equation, we have used a Bessel
function approximation and a Fourier function approximafior the round conducting cross-section. In general,

the same Hermite—Gaussian approximation followed by an iterative procedure can also be applied to solving the
three-dimensional Poisson equation subjedtteer type of transverse boundary conditions.
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