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Second-order stochastic leapfrog algorithm for multiplicative noise Brownian motion
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A stochastic leapfrog algorithm for the numerical integration of Brownian motion stochastic differential
equations with multiplicative noise is proposed and tested. The algorithm has a second-order convergence of
moments in a finite time interval and requires the sampling of only one uniformly distributed random variable
per time step. The noise may be white or colored. We apply the algorithm to a study of the approach towards
equilibrium of an oscillator coupled nonlinearly to a heat bath and investigate the effect of the multiplicative
noise(arising from the nonlinear couplingn the relaxation time. This allows us to test the regime of validity
of the energy-envelope approximation method.

PACS numbgs): 02.60.Cb, 05.16-a, 05.40--a, 02.50.Ey

[. INTRODUCTION obtain statistical information, or we may directly solve the
Fokker-Planck equation which describes the evolution of the
Noise terms in stochastic differential equations come incorresponding probability distribution function. Both ap-
two varieties: additive and multiplicative. In the general proaches have their share of advantages and disadvantages.
case, noise terms can enter the equations of motion coupldebkker-Planck equations are partial-differential equations
directly to some function of the stochastic variable. This isand their mathematical properties are still not fully under-
the case of multiplicative noise. The special case of additivetood. Moreover, they are very expensive to solve numeri-
noise occurs when the noise term does not couple directly toally even for dynamical systems possessing only a very
the stochastic variabléln the case of stochastjmartial dif- modest number of degrees of freedom. Truncation schemes
ferential equations, the noises can be spatiotemporal, butr closures(such as cumulant truncationeave had some
here we restrict attention to ordinary stochastic differentialsuccess in extracting the behavior of low-order moments, but
equations in which the noises are only tempotadr reasons the systematics of these approximations remains to be eluci-
of simplicity, additive noise tends to be employed in mostdated. Compared to the Fokker-Planck equation, stochastic
modeling applications. differential equations are not difficult to solve, and with the
Nevertheless, in many situations, stochastic differentiabdvent of modern supercomputers, it is possible to run a very
equations with multiplicative noise are physically relevant.large number of realizations in order to compute low-order
In addition, they also have interesting mathematical propermoments accuratelf\WWe may mention that in applications
ties. Consequently such equations have attracted substantial field theories it is essentially impossible to solve the cor-
attention over the yearsl—11]. The key point lies in the responding Fokker-Planck equation since the probability dis-
fundamental difference between additive and multiplicativetribution is now a functional.However, the extraction of the
noises: because additive noise does not couple directly to thgobability distribution function itself is very difficult due to
system variables, it disappears from the noise-averaged forthe sampling noise inherent in a particle representation of a
of the dynamical equations. However, in the case of multi-smooth distribution.
plicative noise, the system variables do couple directly to the Numerical algorithms to solve stochastic differential
noise (alternatively, we may say that the noise amplitudeequations have been discussed extensively in the literature
depends on the system variableBhis fact can lead to dra- [14-19. The simplest, fastest, and still widely used algo-
matic changes of system behavior that cannot occur in thethm is Euler's method, which yields a first-order conver-
presence of additive noise alone. Two classic illustrations argence of moments for a finite time interval. Depending on
the Kubo oscillatof12] and the existence of long-time tails the control over statistical errors arising from the necessarily
in transport theory{13]. In this paper we will investigate finite number of realizations, in the extraction of statistical
another example, that of an oscillator nonlinearly coupled tanformation it may or may not pay to use a higher order
a heat bath, in which the effects of multiplicative noise canalgorithm especially if it is computationally expensive. Be-
significantly alter the qualitative nature, as well as the ratecause of this fact, it is rare to find high-order schemes being
[2], of the equilibration procesgelative to that of an oscil- put to practical use for the solution of stochastic differential
lator subjected only to additive noise equations, and second-order convergence is usually consid-
The dynamical behavior of systems subjected to noise caared a good compromise between efficiency and accurracy.
be studied in two different ways: we may either solve sto-A popular algorithm with second-order convergence of mo-
chastic differential equations and average over realizations tments for additive noise but with only first-order conver-
gence of moments for multiplicative noise is Heun’s algo-
rithm [also called stochastic RKRunge-Kutta, 2nd order
*Electronic address: jigiang@lanl.gov by some authoiis[14,17,2Q. A stochastic leapfrog algo-
Electronic address: habib@lanl.gov rithm, which has the same order convergence of moments as
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Heun's method, was suggested in R&f1] to study particle should be only one unique Fokker-Planck equajidh.s

motion in a stochastic potential without damping. Severaimportant to note that the vast majority of numerical update

other algorithms for particle motion in a quasiconservativeschemes for Langevin equations use the Ito form of the equa-

stochastic system were proposed in R&6] and in the book tion.

by Allen and Tildesley22]. At every time step, these meth-  The integral representation of the set of equatidnss

ods all require sampling two Gaussian random variables

which adds to the computational cost. A modified algorithm t

suggested in Ref.19] requires only one Gaussian random Xi(t)=Xi(0)+f dsF(X1(S), . .. Xn(S))

variable but applies only to white Gaussian noise. In the 0

following sections, we present a stochastic leapfrog algo- t

rithm for multiplicative Gaussian white noise and Ornstein- +J dsoij(X1(s), - - - Xa(S))§j(s), 4

Uhlenbeck colored noise which not only has second-order 0

convergence of moments but also requires the sampling of

only one random uniform variable per time step. wherex;(0) is a given sharp initial condition at=0. The
The organization of this paper is as follows: General nu-infinitesimal update form of this equation may be derived by

merical integration of a system of stochastic differentialreplacingt with an infinitesimal time step,

equations with Gaussian white noise is discussed in Sec. Il.

The stochastic leapfrog algorithms for Brownian motion with h t

Gaussian white noise and colored Ornstein-Uhlenbeck noiseXi(h) =x;(0)+ fo dt’ Fi| X,(0) + fo dsF(x(s))
are given in Sec. Ill. Numerical tests of these algorithms

using a one-dimensional harmonic oscillator are presented in ¢ h

Sec. IV. A physical application of the algorithm to the +fo dsoy(X(s))&(s) +f0 dt’ o

multiplicative-noise Brownian oscillator is given in Sec. V.
Section VI contains the final conclusions and a short discus-

i X
sion.

Xi(0) + f;'dsa(x(sm f;'ds«rk.(x(s»a(s)

Il. NUMERICAL INTEGRATION OF STOCHASTIC XE(). ®)
DIFFERENTIAL EQUATIONS

SinceF; andoy; are smooth functions of the , they may be

expanded about their valuestat 0, in which case we can

write the exact solution fox;(h) as

A general system of continuous-time stochastic differen
tial equations(Langevin equations with i labeling the sto-
chastic variables, can be written as

).(i:Fi(Xl! ...,Xn)+0'ij(X1, ...,Xn)fj(t), (1) Xi(h):Di(h)+Si(h)v (6)
wherei=1, ... h and¢(t) is a Gaussian white noise with whereD;(h) andS;(h) denote the deterministic and stochas-
tic contributions, respectively. The deterministic contribution
(&(1)=0, (2 Di(h)is
(§(Dg())=a(t=t"), 3 Di(h)=x(0)+hF;+ 5h?F; (F+0O(h®), )

and the symbo{- - -) represents an average over realizations . )

of the inscribed variabléensemble averageThe general- WhereF; = dF;/dx, the summation convention for the re-
ized force F; contains all the systematic terms, including Pe&te€d indices having being employed. The stochastic con-
damping effects. The noise is said to be additive wargris tribution S;(h) is

not a function of thex;, otherwise it is said to be multipli-

cative. In the case of multiplicative noises, a mathematical ~ S;(h) = oi;W;(h) + oij ko C)j(h) + F; xoqZi(h)

subtlety arises in interpreting stochastic integrals, the so-

called Ito-Stratonovich ambiguity23] [i.e., whether, given +oij kF(hWi(h) = Z;(h)

two s_toc_hastlc ptrocessé‘s ade, to Ideflne the formal sto- + 301 1Tk Hmn (D) + 3Fi 0o G h)
chastic integralfoYdX as limy; .o ZoY (X, —X¢) (It0)
or as limy_o oY +1,, y2(Xe,,,—X¢) (Stratonovich]. It
should pe stresse_d Fhat this is a point Qf mathematic's and not + 501} KImTknT 10 Tmpl nopj ™ 0O(h®%?). (8)

of physics. Once it is clear how a particular Langevin equa-

tion has _been derived and_what it |s_supposed to represent, {40 quantitiesW;, Cij, Hiy, Zi, Gij, Kij, andl,y, are
should either be free of this ambiguitgs in the case of the ' 3nqom variables which can be written as stochastic integrals
example we study lateor |t.should .be clear tha_t the(e must ,ver the Gaussian white noigét),

exist two different stochastic equations, one written in the Ito

form, the other in Stratonovich, both representing the same N

physwal process and hence yielding |dent|ca_l answers for the Wi(h):J’ dté () ~0(h?), 9)
variables of interestiAnother way to state this is that there 0

+ 3Fk0ij k101mKmi(h) + 3F 0 ki kmKmj(h)
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h
Cij(h):J'O dtWi(t)§;(t),~O(h), (10

h
Hijk(h):fo dtWi (W, (1) &(t)~O0(h¥?), (1D

Z(h)—f dtW(t)~0(h%?), (12
h

Gij(h)=JodtV\/i(t)W;(t)~O(h2), (13
h

Ki,-(h)=f0 tdtW(t)&(t)~0O(h?), (14

h
Iim(h):fodtvvi(t)wj(t)wka)a(t)~O<h2>. (15
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gomparing Eqs.(16)_and (24), we see that ifD;(h) and
D;(h), andS;(h) andS;(h) coincide up toh?, we will have

xi(h)—x;(h)=0(h®) (25
and for a finite time interval
(xi(OM = ()M =0(h?). (26)

IIl. STOCHASTIC LEAPFROG ALGORITHM
FOR BROWNIAN MOTION

The approach to modeling Brownian motion that we con-
sider here is that of a particle coupled to the environment
through its position variablgl]. When this is the case, noise
terms enter only in the dynamical equations for the particle
momenta. In Eq(27) below, the indices are single-particle
phase-space coordinate indices; the convention used here is

Ito integration has been employed in the derivation of thethat the odd indices correspond to momenta, and the even

above equations.
The nth moment of thex; is

(xi(h)"=([Di(h)+S;(h)]")=D;(h)"+nD;i(h)"" S (h))

+CADi(h)" X[ Si(h) ]2+ -, (16)
where
: i n!
C“:(n):i!(n——i)! (17
and
<S|(h> i o_kso_lsh2+o(h3) (18)
(Si(h)s;(h))= d'd'h+ic ”“ ¥ ““o"'h2+l “Ff|((r‘<'h2
+§O’”Flk0'k|h2+20'” jl kh2

+igl UI’LFkhZ‘F %Uipah’aokmalmhz

+ 5P’ oMo' ™h2+ O(h®), (19
(Si(h)Sj(h)Sc(h))=0(h?), (20)
(Si(m*H=3(a")*+0(h%), (21)

((Si(h)®)=0(h?). (22)

Suppose that the results from a numerical algorithm were

written as
x(h)=D;(h)+S(h), (23)

where the;i are approximations to the exact solutians
The nth moment ofx; is

(xi(NM=([Dj(h)+Si(h)]"=D;(h)"+nD;(h)""XS(h))
+C2D(M™A[S(h) ]2 +- - -. (24)

indices to the spatial coordinate. In the case of three dimen-
sions, the dynamical equations then take the general form

X1=F1(X1,%2,X3,X4,X5,Xg) + 011(X, Xg,Xg) £4(1),
Xp=Fa(xq),

Xa=F 3(X1,X2,X3,X4,X5,Xg) + 033X, Xq,Xg) £3(1),
X4:F4(X3),

Xs=F5(X1,X2,X3,X4,X5,Xg) + 055(X2, Xq,Xg) £5(1),

Xe=Fo(Xs). (27)

In the dynamical equations for the momenta, the first term on
the right-hand side is a systematic drift term which includes
the effects due to external forces and damping. The second
term is stochastic in nature and describes a noise force
which, in general, is a function of position. The no&g) is

first assumed to be Gaussian and white as defined by(Bqgs.
and (3). The stochastic leapfrog algorithm for Eq&7) is
written as

x(h)=D;(h)+S(h). (28)

The deterministic contributio®;(h) can be obtained using
the deterministic leapfrog algorithridefined by keeping
only the first two terms in Eq(29) below]. The stochastic
contribution S;(h) can be obtained by applying E¢) on

Eq. (27). The stochastic integration defined by E(—(15)

can be approximated so that the moment relationships de-
fined by Egs.(18) to (22) are satisfied. After some calcula-

tion, the deterministic contributio(h) and the stochastic
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contributiong(h) of the above recursion formula for one- qu the stochastic process with colored noise, the Ieapfrog
step integration are found to be algorithm for Eqs(27) is of the same form as that for white

noise[cf. Eq. (29)], but with

—————— +hoy (G G x5)E (i=135),
(i=2,4,6), XXX Xt G X6t

Si(h) =0 hWi(h) + 3F; koigh® AW (h) +hoy 110G XE XE)E L] (1=2,4,6),

+ 305 jF;h¥AW, () + 3 F; ooy h?Wi (h) Wi (h) 55_(h)=§i(0)exq—kih) (=135,
(i=1,3,5: j=2,4,6; k,|=1,3,5), |
_ 1 - 1 o S(h)= —= o (K xa X kAN (1=1,3,5),
a(h)=ﬁFi,jajjh3’2\Nj(h)+ ZFi,“aﬁhzwj(h)wj(h) V3
S(h)=0 (i=24.6),
(i=2,4,6; j=1,3,5),

Se =kivhW(h) - 3k?h*ARi(h)  (1=1,35, (36)

(29  where

vn\:k;agwi(h) is a series of random numbers with the mo- X* =%,(0)+ 2h[Fi(Xq,X2,X3,X4,X5,Xg)
_ _ _ + (X, Xa X &1 (1=1,35),
(Wih)=([Wi(M)]%=((Wi(h))»=0,  (30) T
~ 2 ~ 4 i*:Xi(o)+%hFi(lex21x31X4!X51X6) (|:21416):
((Wi(h)9=1, ((W;(h))%)=3. (31
. . . . & =&(0)exp—zkih) (i=1,35). (37)
This can not only be achieved by choosing true Gaussian
random numbers, but also by using the sequence of random

numbers following: IV. NUMERICAL TESTS

The above algorithms were tested on a one-dimensional

- ‘/§ R<1/6 stochastic harmonic oscillator with a simple form of the mul-
Wi(h)=1 0, 1/6<R<5/6 (32) tiplicative noise. The equations of motion were
J3, 5/6<R

P=F1(p.X)+ (X&),
whereR is a uniformly distributed random number on the }
interval (0,1). This trick significantly reduces the computa- X=p, (39)

tional cost in generating random numbers. )
Next we consider the case that the noise in Eg@ isa  WhereF(p,x)=—vyp—7°x ando(x) = — ax. The stochas-

colored Ornstein-Uhlenbeck process which obeys tic leapfrog integrator for this case is given by E@29)
(white nois¢ and Eq.(36) (colored noisgwith the substitu-
(&(1))=0, (33 tions x;=p, X,=X. A comparison was also run against the

Heun algorithm described in Appendix A.
k; As a first test, we computetk®) as a function of time
(&(D&))=5exp(—ki[t=t']), (349 step size. To begin, we took the case of zero damping con-
stant (y=0), where(x?) can be determined analytically. The
where the correlation factds; is the reciprocal of the corre- top curve in Fig. 1 showéx?) att=6.0 as a function of time
lation time. In the limit ofk;—, the Ornstein-Uhlenbeck step size with white Gaussian noise. Here, the parameters
process reduces to Gaussian white noise. The above proce¥3d a are set to 1.0 and 0.1. The ensemble averages were
can be generated by using a white Gaussian noise from taken over 16 independent simulations. The analytically de-

stochastic differential equation termined value ofx?) att=6.0 is 2.095 222the derivation
of the analytical results is given in the AppendiXhe qua-
fi(t)z—kifi(t)JfkiéTi(t), (35 dratic convergence of the stochastic leapfrog algorithm is

clearly seen in the numerical results. We then considered the
where ¢;(t) is a standard Gaussian white noise. The initialcase of colored Ornstein-Uhlenbeck noise as a function of
value &,(0) is chosen to be a Gaussian random number withime step size using the same parameters as in the white
(&(0))=0 and(&(0)?)=k;/2. Gaussian noise case and with the correlation paranieter
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FIG. 2. Finite damping ¢=0.1) convergence test. Tofx?(t))

FIG. 1. Zero damping convergence test. Tag(t)) att=6 as ~ att=12 as a function of step size with white Gaussian noise. Bot-
a function of step size with white Gaussian noise. Bottérd(t)) ~ tom: (x(t)) at t=12 as a function of step size with colored
att=6 as a function of step size with colored Ornstein-UhlenbeckOrnstein-Uhlenbeck noise. Solid lines represent quadratic fits to the
noise. Solid lines represent quadratic fits to the data pdtits ~ data pointdiamonds.
monds.

. o V. A PHYSICAL APPLICATION: THE MECHANICAL
=0.16. The result is shown as the bottom curve in Fig. 1 and OSCILLATOR

the quadratic convergence is again apparent.

We verified that the quadratic convergence is present for In this section we apply our algorithm to studying the
nonzero damping ¥=0.1). Att=12.0, and with all other approach to thermal equilibrium of an oscillator coupled
parameters as above, the convergencéxdf as a function nonlinearly to a heat bath modeled by a set of noninteracting
of time step is shown by the top and bottom curves in Fig. Zharmonic oscillator§1]. The nonlinear coupling leads to the
(white Gaussian noise and colored Ornstein-Uhlenbeck
noise, respective)y

As a comparison against the conventional Heun'’s algo-
rithm, we computed'x®) as a function oft using 100 000
numerical realizations for a particle starting from (0.0,1.5) in
the (x,p) phase space. The results along with the analytical “x
solution and a numerical solution using Heun’s algorithm are
given in Fig. 3. Parameters used wédre 0.1, »=1.0, and
a=0.1. The advantage in accuracy of the stochastic leapfrog
algorithm over Heun'’s algorithm is clearly displayed, both in 4r
terms of error amplitude and lack of a systematic drift.

We note that while in general Heun’s algorithm is only

Error: Heun .

A
e A
o ,,m'.m:"<;'Ufy}‘;ﬂ!ﬂ’}%%ﬂf%frmh"‘"“"

linear for multiplicative noise applications, for the particular O Pl CA——
problem at hand it turns out to be quadratic. This is due to a - .. FErorlLeapfrog
coincidence: the stochastic termxftloes not contaiV(h) 0 100 200 300 400 500

but does possess a higher-order térwi(h). However, this t

higher-order term has a larger coefficient compared with our FIG. 3. Comparing the stochastic leapfrog and the Heun algo-
stochastic leapfrog algorithm, and this accounts for the largetithm: (x?(t)) as a function oft. Errors are given relative to the
errors observed in Fig. 3. exact solution.
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introduction of multiplicative noise into the system dynam- 1.2
ics. Lindenberg and Seshadri have pointed out that, at weak
coupling, multiplicative noise may significantly enhance the 1.0}
equilibration rate relative to the rate for weak linear coupling
(additive nois¢ [2]. We will choose the same form of the 08

coordinate couplings as in Re®], in which case the addi-
tive noise equations are R 0.6
v

P=— wix—X\op+ V2Doko(t), os

X=p, (39

0.2

and for the system with multiplicative noise only

. 0 50 100 150 200 250 300 350 400
P=— woX—AoX*p— 2D gx£,(1), ¢

Y= (40) FIG. 4. Temporal evolution of the scaled average energy

P (E(t))/kT with additive noise and multiplicative noise. The dashed

where the diffusion coefficient®: = \.kT. i=0.2. \: is the lines | and Il are the predictions from E4) for kT=200 and
coupling constantk is Boltzmanln’s (I:onlstanfl" is the heat KT=45, respectively. The dashed line Ill is the theoretical predic-
bath temperature, and, is the oscillator angular frequency tion for additive noise withkT=4.5. As predicted, the relaxation
without damping1 Theo approach to thermal equilibrium iSproceeds much faster with multiplicative noise: The solid lines are

numerical results for multiplicative noise k=200 andk T=4.5.

g_uar_ant_eed for_ both sorts of noises by the fluctuatlon-lt is clear that at higher temperatures, the theory grossly underesti-
dissipation relation

mates the relaxation time.

(6i(Dg;(5))=3;8(t=9) @Y cative noise is not obviously apparent as no exact solution is
written here for the general case when both noises are simuknown to exist. The prediction of a relaxation process con-
taneously present. While in all cases it is clear that the finaffolled by a single exponential as found in E@4) is a
distribution is identical and has to be the thermal distribu-consequence of the assumptiox?(t))=kT/wj at “late”
tion, the precise nature of the approach to equilibrium carimes, this implying a constant damping coefficient in the
certainly be different. We wish to explore this issue in moreL-angevin equatiori40).
detail. An important point to keep in mind is that in this The time-scale separations necessary for the energy-
particular system of equations there is no noise-induced drifenvelope method to be applicable are encoded in the follow-
in the Fokker-Planck equation obtained from the Stratonoving inequalities2]:
ich form of the Langevin equation, i.e., there is no Ito-

Stratonovich ambiguity. E<l additive noise (45)
It is a simple matter to solve the Langevin equations given wo '

above applying the algorithm from Eq&9). As our primary

diagnostic, we computed the noise-averaged enéEdy)) KT\,

of the oscillator as a function of timg where <1 multiplicative noise. (46)

g
E(t)= 3p?+ 3 wpX. 42
(O)=3p"*305 42 As a first check, we performed simulations withy=1.0,
In the weak-coupling limit and employing orbit-averaging Ao=A>=0.01, andkT=4.5, in which case both the above

(valid presumably when the dynamical time scale is muctFonditions are satisfied. Moreover, with these choices of pa-

smaller than the relaxation time scalene findg2] rameter values, and within the energy-envelope approxima-
tion, the relaxation time predicted for multiplicative noise is
(E(t))=KT—(KT—Eg)e o (43)  substantially smaller than for the case of additive noise. At

the same time we also ran a simulationkdt=200 to see
in the case of additive noisé result which can also be how the energy-envelope approximation for multiplicative
directly obtained as a limiting case from the known form of noise breaks down at high temperatures.

the exact solution given, e.g., in R¢R4]). The correspond- In Fig. 4 we display the time evolution of the average
ing form of the approximate solution in the case of multipli- energy (scaled bykT for conveniencg with additive and
cative noise is multiplicative noise both from the simulations and the ap-
E T proximate analytical calculations. In the case of weak cou-
(E(1))= 0 (44) pling to the environmentsmall Ay, \5), the rate at which

the average energy approaches equilibrium is significantly
greater for the case of multiplicative noise relative to the case
While in the case of additive noise, the exponential nature 0bf additive noise more or less as expected. In addition, the
the relaxation is already clear from the form of the exactanalytic approximation resulting from the application of the
solution (cf. Ref.[24]), the situation in the case of multipli- energy-envelope metho@4) is seen to be in reasonable

Eo+ (KT—Eg)exp — N\ kTt w5)



7436 JI QIANG AND SALMAN HABIB PRE 62

ACKNOWLEDGMENTS

We acknowledge helpful discussions with Grant Lythe
and Robert Ryne. Partial support for this work came from the
DOE Grand Challenge in Computational Accelerator Phys-
ics. Numerical simulations were performed on the SGI Ori-
gin 2000 systems at the Advanced Computing Laboratory
(ACL) at Los Alamos National Laboratory, and on the Cray
T3E at the National Energy Research Scientific Computing
Center(NERSQ at Lawrence Berkeley National Laboratory.

Additive Noise

01}

Multiplicative Noise

AT APPENDIX A

oo | | . . In this section we give short descriptions of the Euler and
0 50 100 150 200 250 300 Heun algorithms referenced in the text. The Euler algorithm
t is defined by

FIG. 5. The left-hand side of Eq47) as a function of time
(straight ling compared with numerical results f&T=4.5. Also
shown is a numerical result for the case of additive noise which is
in excellent agreement with the predicted exponential relaxation
with the relaxation time scale 1/\ .

Xi(h)=x%(0)+F;(x1(0), ... X,(0)h
+ai((x1(0), . .. X,(0)W;(h). (A1)

The convergence of the moments of the Euler algorithm for
a finite time interval is of ordeh for both additive and mul-
tiplicative noise.

The Heun algorithm is defined by

agreement with the numerical simulations foF=4.5. The
slightly higher equilibration rate from the analytical calcula-
tion is due to the truncation in the energy-envelope equation
using the(E?(t))~2(E(t))? relation which yields an upper

bound on the rate of equilibration of the average en¢jy xi(h)=xi(0) + 5[ Fi(x1(0), . .. Xx(0))

Note that in the case of high temperatutieT&200) the +Fi(1(h),- - -, n(h))]h

relaxation time computed from the energy-envelope method

is much smaller than the numerical result, consistent with the + Uij&l(o),. .. ,Z](O))Wj(h), (A2)

violation of the condition(46).
While the results shown in Fig. 4 do show that the energywhere
envelope approximation is qualitatively correct within its pu-

tative domain of validity, i_t is clear that the actua! relaxation wi(h):;i(o)Jr Fi&l(o). N ,x_n(O))h

process is not of the precise for@d). In Fig. 5 we illustrate o -

this point by plotting + 07 (x1(0), - - .,xn(O))ij(h). (A3)
w = exp(— A\ KTt wd) (47 This algorithm has an ordér® convergence of the moments
(E())(KT—Eo) 0 for a finite time interval with additive noise and, in general,

val . . | thmi le: the same order of convergence of the moments as the Euler
[equivalent to Eq(44)] against time on a logarithmic scale: ;g qrithm in the presence of multiplicative noigdlore de-

the relaxation is clearly nonexponential. The reason for theyjieq discussions of these algorithms can be found in Ref.
failure of the approximation is that despite the fact that qulA']')

uipartition of energy does take place on a relatively shor
time-scale, it is not true thatx?(t)) can be treated as a

constant even at relatively late times. APPENDIX B
The analytic solution of Eqg38) for (x?(t)) (with white
VI. CONCLUSIONS Gaussian noigeas a function of time in the special case of

We have presented a stochastic leapfrog algorithm fof €0 damping, i.e.y=0, can be. obtained by solvm'g. the
single-particle Brownian motion with multiplicative noise. equ_alent Fokker-Planck equatig@4] for the probability
This method has the advantages of retaining the symplectﬂens'tyf(x’p’t)’
property in the deterministic limit, ease of implementation, 0 Fypx) 1 pr
and second-order convergence of moments for multiplicative__ ¢y :[_ - 1—p,+ Z 02(X) — | f(x _

. . . . . . . . ( 1p1t) p 0-( ) 2 ( vpat)
noise. Sampling a uniform distribution instead of a Gaussiandt X ap 2 p
distribution helps to significantly reduce the computational (B1)
cost. A comparison with the conventional Heun’s algorithm . ) .
highlights the gain in acuracy due to the new method. Fi-1N€ expectation value of any functidf(x,p;t) can be writ-
nally, we have applied the stochastic leapfrog algorithm to 46N as
nonlinearly coupled oscillator-heat-bath system in order to .

;ﬂ\éerset:g)a(\zkt;eperggg;so.f multiplicative noise on the nature of (M(x,p))= le dx dpM(x,p)f(x,p,t). (B2)
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EquationgB1) and(B2) can be used to yield a BBGKY-like (X2(t))=cq exp(rit)+c, exp(rot) + cgexp(rst), (B5)
heirarchy for the evolution of phase-space moments. Since

the system we are considering is linear, this heirarchy trunwherec,, c,, andcz are constants depending on initial con-
cates exactly and yields a group of coupled linear ordinanglitions, andr, r, andrz are the roots of a third-order aleg-
differential equations for the momen(s?), (xp), and(p?).  braic equation
These equations can be written as a single third-order time

2 2 3_
evolution equation fofx?), 20°—4AnX=x"=0, (B6)
d3<X2> d<X2> which giveS
=—4n*——+2a*%(x?, B3
a6 T g e B3 1= (V64275 + o+ a?) V3~ (\J64I2T°+ o®— a?) 23,
subject to the initial conditions r,=1(1+3i)(\/641277°+ a*— a?) 1R
(x3(0))=x3(0), — 11— 3 (V64T + a*+a?)13,  (BY)
(X%(0))=2x(0)p(0), (B4) rs=rj,
(x?(0))=2p?(0)—27°x%(0). where the superscript * represents complex conjugation. The
existence of the positive real root implies that(x?(t)) will
This equation has an analytical solution written as have an exponential growth in time.
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