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Second-order stochastic leapfrog algorithm for multiplicative noise Brownian motion
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A stochastic leapfrog algorithm for the numerical integration of Brownian motion stochastic differential
equations with multiplicative noise is proposed and tested. The algorithm has a second-order convergence of
moments in a finite time interval and requires the sampling of only one uniformly distributed random variable
per time step. The noise may be white or colored. We apply the algorithm to a study of the approach towards
equilibrium of an oscillator coupled nonlinearly to a heat bath and investigate the effect of the multiplicative
noise~arising from the nonlinear coupling! on the relaxation time. This allows us to test the regime of validity
of the energy-envelope approximation method.

PACS number~s!: 02.60.Cb, 05.10.2a, 05.40.2a, 02.50.Ey
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I. INTRODUCTION

Noise terms in stochastic differential equations come
two varieties: additive and multiplicative. In the gener
case, noise terms can enter the equations of motion cou
directly to some function of the stochastic variable. This
the case of multiplicative noise. The special case of addi
noise occurs when the noise term does not couple direct
the stochastic variable.~In the case of stochasticpartial dif-
ferential equations, the noises can be spatiotemporal,
here we restrict attention to ordinary stochastic differen
equations in which the noises are only temporal.! For reasons
of simplicity, additive noise tends to be employed in mo
modeling applications.

Nevertheless, in many situations, stochastic differen
equations with multiplicative noise are physically releva
In addition, they also have interesting mathematical prop
ties. Consequently such equations have attracted substa
attention over the years@1–11#. The key point lies in the
fundamental difference between additive and multiplicat
noises: because additive noise does not couple directly to
system variables, it disappears from the noise-averaged
of the dynamical equations. However, in the case of mu
plicative noise, the system variables do couple directly to
noise ~alternatively, we may say that the noise amplitu
depends on the system variables!. This fact can lead to dra
matic changes of system behavior that cannot occur in
presence of additive noise alone. Two classic illustrations
the Kubo oscillator@12# and the existence of long-time tai
in transport theory@13#. In this paper we will investigate
another example, that of an oscillator nonlinearly coupled
a heat bath, in which the effects of multiplicative noise c
significantly alter the qualitative nature, as well as the r
@2#, of the equilibration process~relative to that of an oscil-
lator subjected only to additive noise!.

The dynamical behavior of systems subjected to noise
be studied in two different ways: we may either solve s
chastic differential equations and average over realization

*Electronic address: jiqiang@lanl.gov
†Electronic address: habib@lanl.gov
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obtain statistical information, or we may directly solve th
Fokker-Planck equation which describes the evolution of
corresponding probability distribution function. Both a
proaches have their share of advantages and disadvant
Fokker-Planck equations are partial-differential equatio
and their mathematical properties are still not fully und
stood. Moreover, they are very expensive to solve num
cally even for dynamical systems possessing only a v
modest number of degrees of freedom. Truncation sche
or closures~such as cumulant truncations! have had some
success in extracting the behavior of low-order moments,
the systematics of these approximations remains to be e
dated. Compared to the Fokker-Planck equation, stocha
differential equations are not difficult to solve, and with th
advent of modern supercomputers, it is possible to run a v
large number of realizations in order to compute low-ord
moments accurately.~We may mention that in application
to field theories it is essentially impossible to solve the c
responding Fokker-Planck equation since the probability d
tribution is now a functional.! However, the extraction of the
probability distribution function itself is very difficult due to
the sampling noise inherent in a particle representation
smooth distribution.

Numerical algorithms to solve stochastic different
equations have been discussed extensively in the litera
@14–19#. The simplest, fastest, and still widely used alg
rithm is Euler’s method, which yields a first-order conve
gence of moments for a finite time interval. Depending
the control over statistical errors arising from the necessa
finite number of realizations, in the extraction of statistic
information it may or may not pay to use a higher ord
algorithm especially if it is computationally expensive. B
cause of this fact, it is rare to find high-order schemes be
put to practical use for the solution of stochastic different
equations, and second-order convergence is usually con
ered a good compromise between efficiency and accurr
A popular algorithm with second-order convergence of m
ments for additive noise but with only first-order conve
gence of moments for multiplicative noise is Heun’s alg
rithm @also called stochastic RK2~Runge-Kutta, 2nd order!
by some authors# @14,17,20#. A stochastic leapfrog algo
rithm, which has the same order convergence of moment
7430 ©2000 The American Physical Society
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PRE 62 7431SECOND-ORDER STOCHASTIC LEAPFROG ALGORITHM . . .
Heun’s method, was suggested in Ref.@21# to study particle
motion in a stochastic potential without damping. Seve
other algorithms for particle motion in a quasiconservat
stochastic system were proposed in Ref.@16# and in the book
by Allen and Tildesley@22#. At every time step, these meth
ods all require sampling two Gaussian random variab
which adds to the computational cost. A modified algorith
suggested in Ref.@19# requires only one Gaussian rando
variable but applies only to white Gaussian noise. In
following sections, we present a stochastic leapfrog al
rithm for multiplicative Gaussian white noise and Ornste
Uhlenbeck colored noise which not only has second-or
convergence of moments but also requires the samplin
only one random uniform variable per time step.

The organization of this paper is as follows: General n
merical integration of a system of stochastic different
equations with Gaussian white noise is discussed in Sec
The stochastic leapfrog algorithms for Brownian motion w
Gaussian white noise and colored Ornstein-Uhlenbeck n
are given in Sec. III. Numerical tests of these algorith
using a one-dimensional harmonic oscillator are presente
Sec. IV. A physical application of the algorithm to th
multiplicative-noise Brownian oscillator is given in Sec. V
Section VI contains the final conclusions and a short disc
sion.

II. NUMERICAL INTEGRATION OF STOCHASTIC
DIFFERENTIAL EQUATIONS

A general system of continuous-time stochastic differ
tial equations~Langevin equations!, with i labeling the sto-
chastic variables, can be written as

ẋi5Fi~x1 , . . . ,xn!1s i j ~x1 , . . . ,xn!j j~ t !, ~1!

wherei 51, . . . ,n andj j (t) is a Gaussian white noise with

^j j~ t !&50, ~2!

^j j~ t !j j~ t8!&5d~ t2t8!, ~3!

and the symbol̂•••& represents an average over realizatio
of the inscribed variable~ensemble average!. The general-
ized force Fi contains all the systematic terms, includin
damping effects. The noise is said to be additive whens i j is
not a function of thexi , otherwise it is said to be multipli-
cative. In the case of multiplicative noises, a mathemat
subtlety arises in interpreting stochastic integrals, the
called Ito-Stratonovich ambiguity@23# @i.e., whether, given
two stochastic processesY andX, to define the formal sto-
chastic integral*0

t YdX as limDt→0 (0
l Yt i

(Xt i 11
2Xt i

) ~Ito!

or as limDt→0 (0
l Y(t i1t i 11)/2(Xt i 11

2Xt i
) ~Stratonovich!#. It

should be stressed that this is a point of mathematics and
of physics. Once it is clear how a particular Langevin eq
tion has been derived and what it is supposed to represe
should either be free of this ambiguity~as in the case of the
example we study later! or it should be clear that there mu
exist two different stochastic equations, one written in the
form, the other in Stratonovich, both representing the sa
physical process and hence yielding identical answers for
variables of interest.~Another way to state this is that ther
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should be only one unique Fokker-Planck equation.! It is
important to note that the vast majority of numerical upd
schemes for Langevin equations use the Ito form of the eq
tion.

The integral representation of the set of equations~1! is

xi~ t !5xi~0!1E
0

t

dsFi„x1~s!, . . . ,xn~s!…

1E
0

t

dss i j „x1~s!, . . . ,xn~s!…j j~s!, ~4!

wherexi(0) is a given sharp initial condition att50. The
infinitesimal update form of this equation may be derived
replacingt with an infinitesimal time steph,

xi~h!5xi~0!1E
0

h

dt8 FiFxk~0!1E
0

t8
dsFk„x~s!…

1E
0

t8
dsskl„x~s!…j l~s!G1E

0

h

dt8s i j

3Fxk~0!1E
0

t8
dsFk„x~s!…1E

0

t8
dsskl„x~s!…j l~s!G

3j j~ t8!. ~5!

SinceFi ands i j are smooth functions of thexi , they may be
expanded about their values att50, in which case we can
write the exact solution forxi(h) as

xi~h!5Di~h!1Si~h!, ~6!

whereDi(h) andSi(h) denote the deterministic and stocha
tic contributions, respectively. The deterministic contributi
Di(h) is

Di~h!5xi~0!1hFi1
1
2 h2Fi ,kFk1O~h3!, ~7!

whereFi ,k5]Fi /]xk , the summation convention for the re
peated indices having being employed. The stochastic c
tribution Si(h) is

Si~h!5s i j Wj~h!1s i j ,ksklCl j ~h!1Fi ,ksklZl~h!

1s i j ,kFk„hWj~h!2Zj~h!…

1 1
2 s i j ,klskms lnHmn j~h!1 1

2 Fi ,klskss l tGst~h!

1 1
2 Fks i j ,kls lmKm j~h!1 1

2 Fls i j ,klskmKm j~h!

1 1
6 s i j ,klmskns losmpI nop j1O~h5/2!. ~8!

The quantitiesWi , Ci j , Hi jk , Zi , Gi j , Ki j , and I i jkl are
random variables which can be written as stochastic integ
over the Gaussian white noisej(t),

Wi~h!5E
0

h

dtj i~ t !;O~h1/2!, ~9!
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Ci j ~h!5E
0

h

dtWi~ t !j j~ t !,;O~h!, ~10!

Hi jk~h!5E
0

h

dtWi~ t !Wj~ t !jk~ t !;O~h3/2!, ~11!

Zi~h!5E
0

h

dtWi~ t !;O~h3/2!, ~12!

Gi j ~h!5E
0

h

dtWi~ t !Wj~ t !;O~h2!, ~13!

Ki j ~h!5E
0

h

tdtWi~ t !j j~ t !;O~h2!, ~14!

I i jkl ~h!5E
0

h

dtWi~ t !Wj~ t !Wk~ t !j l~ t !;O~h2!. ~15!

Ito integration has been employed in the derivation of
above equations.

The nth moment of thexi is

^xi~h!n&5^@Di~h!1Si~h!#n&5Di~h!n1nDi~h!n21^Si~h!&

1Cn
2Di~h!n22^@Si~h!#2&1•••, ~16!

where

Cn
i 5S i

nD 5
n!

i ! ~n2 i !!
~17!

and

^Si~h!&5 1
4 F ,kl

i skss lsh21O~h3!, ~18!

^Si~h!Sj~h!&5s i l s j l h1 1
2 s ,k

imskls ,p
jmsplh21 1

2 s i l F ,k
j sklh2

1 1
2 s j l F ,k

i sklh21 1
2 s i l s ,k

j l Fkh2

1 1
2 s j l s ,k

il Fkh21 1
4 s ips ,kl

jp skms lmh2

1 1
4 s jps ,kl

ip skms lmh21O~h3!, ~19!

^Si~h!Sj~h!Sk~h!&5O~h3!, ~20!

^Si~h!4&53~s i i !41O~h3!, ~21!

^~Si~h!!5&5O~h3!. ~22!

Suppose that the results from a numerical algorithm w
written as

x̄i~h!5D̄ i~h!1S̄i~h!, ~23!

where thex̄i are approximations to the exact solutionsxi .
The nth moment ofx̄i is

^x̄i~h!n&5^@D̄ i~h!1S̄i~h!#n&5D̄ i~h!n1nD̄i~h!n21^S̄i~h!&

1Cn
2D̄ i~h!n22^@S̄i~h!#2&1•••. ~24!
e

e

Comparing Eqs.~16! and ~24!, we see that ifDi(h) and
D̄ i(h), andSi(h) andS̄i(h) coincide up toh2, we will have

xi~h!2xī~h!5O~h3! ~25!

and for a finite time interval

^xi~ t !n&2^xī~ t !n&5O~h2!. ~26!

III. STOCHASTIC LEAPFROG ALGORITHM
FOR BROWNIAN MOTION

The approach to modeling Brownian motion that we co
sider here is that of a particle coupled to the environm
through its position variable@1#. When this is the case, nois
terms enter only in the dynamical equations for the parti
momenta. In Eq.~27! below, the indices are single-particl
phase-space coordinate indices; the convention used he
that the odd indices correspond to momenta, and the e
indices to the spatial coordinate. In the case of three dim
sions, the dynamical equations then take the general for

ẋ15F1~x1 ,x2 ,x3 ,x4 ,x5 ,x6!1s11~x2 ,x4 ,x6!j1~ t !,

ẋ25F2~x1!,

ẋ35F3~x1 ,x2 ,x3 ,x4 ,x5 ,x6!1s33~x2 ,x4 ,x6!j3~ t !,

ẋ45F4~x3!,

ẋ55F5~x1 ,x2 ,x3 ,x4 ,x5 ,x6!1s55~x2 ,x4 ,x6!j5~ t !,

ẋ65F6~x5!. ~27!

In the dynamical equations for the momenta, the first term
the right-hand side is a systematic drift term which includ
the effects due to external forces and damping. The sec
term is stochastic in nature and describes a noise fo
which, in general, is a function of position. The noisej(t) is
first assumed to be Gaussian and white as defined by Eqs~2!
and ~3!. The stochastic leapfrog algorithm for Eqs.~27! is
written as

x̄i~h!5D̄ i~h!1S̄i~h!. ~28!

The deterministic contributionD̄ i(h) can be obtained using
the deterministic leapfrog algorithm@defined by keeping
only the first two terms in Eq.~29! below#. The stochastic
contribution S̄i(h) can be obtained by applying Eq.~8! on
Eq. ~27!. The stochastic integration defined by Eqs.~9!–~15!
can be approximated so that the moment relationships
fined by Eqs.~18! to ~22! are satisfied. After some calcula
tion, the deterministic contributionD̄ i(h) and the stochastic
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PRE 62 7433SECOND-ORDER STOCHASTIC LEAPFROG ALGORITHM . . .
contribution S̄i(h) of the above recursion formula for one
step integration are found to be

D̄ i~h!5 x̄i~0!1hFi~ x̄1* ,x̄2* ,x̄3* ,x̄4* ,x̄5* ,x̄6* ! ~ i 51,3,5!,

D̄ i~h!5 x̄i* 1 1
2 hFi@xi 211hFi 21~ x̄1* ,x̄2* ,x̄3* ,x̄4* ,x̄5* ,x̄6* !#

~ i 52,4,6!,

S̄i~h!5s i iAhWi~h!1 1
2 Fi ,kskkh

3/2W̃i~h!

1 1
2 s i i , jF jh

3/2W̃i~h!1 1
4 Fi ,klskks l l h

2W̃i~h!W̃i~h!

~ i 51,3,5; j 52,4,6; k,l 51,3,5!,

S̄i~h!5
1

A3
Fi , js j j h

3/2W̃j~h!1
1

4
Fi , j j s j j

2 h2W̃j~h!W̃j~h!

~ i 52,4,6; j 51,3,5!,

x̄i* 5 x̄i~0!1 1
2 hFi~ x̄1 ,x̄2 ,x̄3 ,x̄4 ,x̄5 ,x̄6! ~ i 51,2,3,4,5,6!,

~29!

where W̃i(h) is a series of random numbers with the m
ments

^W̃i~h!&5^@W̃i~h!#3&5^~W̃i~h!!5&50, ~30!

^~W̃i~h!!2&51, ^~W̃i~h!!4&53. ~31!

This can not only be achieved by choosing true Gauss
random numbers, but also by using the sequence of ran
numbers following:

W̃i~h!5H 2A3, R,1/6

0, 1/6<R,5/6

A3, 5/6<R

~32!

where R is a uniformly distributed random number on th
interval ~0,1!. This trick significantly reduces the comput
tional cost in generating random numbers.

Next we consider the case that the noise in Eqs.~27! is a
colored Ornstein-Uhlenbeck process which obeys

^j i~ t !&50, ~33!

^j i~ t !j i~ t8!&5
ki

2
exp~2ki ut2t8u!, ~34!

where the correlation factorki is the reciprocal of the corre
lation time. In the limit ofki→`, the Ornstein-Uhlenbeck
process reduces to Gaussian white noise. The above pro
can be generated by using a white Gaussian noise fro
stochastic differential equation

j̇ i~ t !52kij i~ t !1kiz i~ t !, ~35!

wherez i(t) is a standard Gaussian white noise. The init
valuej i(0) is chosen to be a Gaussian random number w
^j i(0)&50 and^j i(0)2&5ki /2.
n
m

ess
a

l
h

For the stochastic process with colored noise, the leap
algorithm for Eqs.~27! is of the same form as that for whit
noise@cf. Eq. ~29!#, but with

D̄ i~h!5 x̄i~0!1hFi~ x̄1* ,x̄2* ,x̄3* ,x̄4* ,x̄5* ,x̄6* !

1hs i i ~ x̄2* ,x̄4* ,x̄6* !j i* ~ i 51,3,5!,

D̄ i~h!5 x̄i* 1 1
2 hFi@ x̄i 211hFi 21~ x̄1* ,x2̄* ,x̄3* ,x4̄* ,x̄5* ,x6̄* !

1hs i 21i 21~ x̄2* ,x̄4* ,x̄6* !j i 21* # ~ i 52,4,6!,

D̄j i
~h!5j i~0!exp~2kih! ~ i 51,3,5!,

S̄i~h!5
1

A3
s i i ~ x̄2 ,x̄4 ,x̄6!kih

3/2W̃i~h! ~ i 51,3,5!,

S̄i~h!50 ~ i 52,4,6!,

S̄j i
5kiAhW̃i~h!2 1

2 ki
2h3/2W̃i~h! ~ i 51,3,5!, ~36!

where

x̄i* 5 x̄i~0!1 1
2 h@Fi~ x̄1 ,x̄2 ,x̄3 ,x̄4 ,x̄5 ,x̄6!

1s i i ~ x̄2 ,x̄4 ,x̄6!j i # ~ i 51,3,5!,

x̄i* 5 x̄i~0!1 1
2 hFi~ x̄1 ,x̄2 ,x̄3 ,x̄4 ,x̄5 ,x̄6! ~ i 52,4,6!,

j i* 5j i~0!exp~2 1
2 kih! ~ i 51,3,5!. ~37!

IV. NUMERICAL TESTS

The above algorithms were tested on a one-dimensio
stochastic harmonic oscillator with a simple form of the m
tiplicative noise. The equations of motion were

ṗ5F1~p,x!1s~x!j~ t !,

ẋ5p, ~38!

whereF1(p,x)52gp2h2x ands(x)52ax. The stochas-
tic leapfrog integrator for this case is given by Eqs.~29!
~white noise! and Eq.~36! ~colored noise! with the substitu-
tions x15p, x25x. A comparison was also run against th
Heun algorithm described in Appendix A.

As a first test, we computed̂x2& as a function of time
step size. To begin, we took the case of zero damping c
stant (g50), wherê x2& can be determined analytically. Th
top curve in Fig. 1 showŝx2& at t56.0 as a function of time
step size with white Gaussian noise. Here, the parameteh
and a are set to 1.0 and 0.1. The ensemble averages w
taken over 106 independent simulations. The analytically d
termined value of̂ x2& at t56.0 is 2.095 222~the derivation
of the analytical results is given in the Appendix!. The qua-
dratic convergence of the stochastic leapfrog algorithm
clearly seen in the numerical results. We then considered
case of colored Ornstein-Uhlenbeck noise as a function
time step size using the same parameters as in the w
Gaussian noise case and with the correlation parametk
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50.16. The result is shown as the bottom curve in Fig. 1 a
the quadratic convergence is again apparent.

We verified that the quadratic convergence is present
nonzero damping (g50.1). At t512.0, and with all other
parameters as above, the convergence of^x2& as a function
of time step is shown by the top and bottom curves in Fig
~white Gaussian noise and colored Ornstein-Uhlenb
noise, respectively!.

As a comparison against the conventional Heun’s al
rithm, we computed̂ x2& as a function oft using 100 000
numerical realizations for a particle starting from (0.0,1.5)
the (x,p) phase space. The results along with the analyt
solution and a numerical solution using Heun’s algorithm
given in Fig. 3. Parameters used wereh50.1, h51.0, and
a50.1. The advantage in accuracy of the stochastic leap
algorithm over Heun’s algorithm is clearly displayed, both
terms of error amplitude and lack of a systematic drift.

We note that while in general Heun’s algorithm is on
linear for multiplicative noise applications, for the particul
problem at hand it turns out to be quadratic. This is due t
coincidence: the stochastic term ofx does not containW(h)
but does possess a higher-order termhW(h). However, this
higher-order term has a larger coefficient compared with
stochastic leapfrog algorithm, and this accounts for the lar
errors observed in Fig. 3.

FIG. 1. Zero damping convergence test. Top:^x2(t)& at t56 as
a function of step size with white Gaussian noise. Bottom:^x2(t)&
at t56 as a function of step size with colored Ornstein-Uhlenbe
noise. Solid lines represent quadratic fits to the data points~dia-
monds!.
d
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V. A PHYSICAL APPLICATION: THE MECHANICAL
OSCILLATOR

In this section we apply our algorithm to studying th
approach to thermal equilibrium of an oscillator coupl
nonlinearly to a heat bath modeled by a set of noninterac
harmonic oscillators@1#. The nonlinear coupling leads to th

k

FIG. 2. Finite damping (g50.1) convergence test. Top:^x2(t)&
at t512 as a function of step size with white Gaussian noise. B
tom: ^x2(t)& at t512 as a function of step size with colore
Ornstein-Uhlenbeck noise. Solid lines represent quadratic fits to
data points~diamonds!.

FIG. 3. Comparing the stochastic leapfrog and the Heun a
rithm: ^x2(t)& as a function oft. Errors are given relative to the
exact solution.
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PRE 62 7435SECOND-ORDER STOCHASTIC LEAPFROG ALGORITHM . . .
introduction of multiplicative noise into the system dynam
ics. Lindenberg and Seshadri have pointed out that, at w
coupling, multiplicative noise may significantly enhance t
equilibration rate relative to the rate for weak linear coupli
~additive noise! @2#. We will choose the same form of th
coordinate couplings as in Ref.@2#, in which case the addi
tive noise equations are

ṗ52v0
2x2l0p1A2D0j0~ t !,

ẋ5p, ~39!

and for the system with multiplicative noise only

ṗ52v0
2x2l2x2p2A2D0xj2~ t !,

ẋ5p, ~40!

where the diffusion coefficientsDi5l ikT, i 50,2, l i is the
coupling constant,k is Boltzmann’s constant,T is the heat
bath temperature, andv0 is the oscillator angular frequenc
without damping. The approach to thermal equilibrium
guaranteed for both sorts of noises by the fluctuati
dissipation relation

^j i~ t !j j~s!&5d i j d~ t2s! ~41!

written here for the general case when both noises are si
taneously present. While in all cases it is clear that the fi
distribution is identical and has to be the thermal distrib
tion, the precise nature of the approach to equilibrium c
certainly be different. We wish to explore this issue in mo
detail. An important point to keep in mind is that in th
particular system of equations there is no noise-induced
in the Fokker-Planck equation obtained from the Straton
ich form of the Langevin equation, i.e., there is no It
Stratonovich ambiguity.

It is a simple matter to solve the Langevin equations giv
above applying the algorithm from Eqs.~29!. As our primary
diagnostic, we computed the noise-averaged energy^E(t)&
of the oscillator as a function of timet, where

E~ t !5 1
2 p21 1

2 v0
2x2. ~42!

In the weak-coupling limit and employing orbit-averagin
~valid presumably when the dynamical time scale is mu
smaller than the relaxation time scale!, one finds@2#

^E~ t !&5kT2~kT2E0!e2l0t ~43!

in the case of additive noise~a result which can also b
directly obtained as a limiting case from the known form
the exact solution given, e.g., in Ref.@24#!. The correspond-
ing form of the approximate solution in the case of multip
cative noise is

^E~ t !&5
E0kT

E01~kT2E0!exp~2l2kTt/v0
2!

. ~44!

While in the case of additive noise, the exponential nature
the relaxation is already clear from the form of the ex
solution ~cf. Ref. @24#!, the situation in the case of multipli
ak
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n

h

f

f
t

cative noise is not obviously apparent as no exact solutio
known to exist. The prediction of a relaxation process co
trolled by a single exponential as found in Eq.~44! is a
consequence of the assumption^x2(t)&.kT/v0

2 at ‘‘late’’
times, this implying a constant damping coefficient in t
Langevin equation~40!.

The time-scale separations necessary for the ene
envelope method to be applicable are encoded in the foll
ing inequalities@2#:

l0

v0
!1 additive noise , ~45!

kTl2

v0
3

!1 multiplicative noise. ~46!

As a first check, we performed simulations withv051.0,
l05l250.01, andkT54.5, in which case both the abov
conditions are satisfied. Moreover, with these choices of
rameter values, and within the energy-envelope approxi
tion, the relaxation time predicted for multiplicative noise
substantially smaller than for the case of additive noise.
the same time we also ran a simulation atkT5200 to see
how the energy-envelope approximation for multiplicati
noise breaks down at high temperatures.

In Fig. 4 we display the time evolution of the averag
energy ~scaled bykT for convenience! with additive and
multiplicative noise both from the simulations and the a
proximate analytical calculations. In the case of weak c
pling to the environment~small l0 , l2), the rate at which
the average energy approaches equilibrium is significa
greater for the case of multiplicative noise relative to the c
of additive noise more or less as expected. In addition,
analytic approximation resulting from the application of t
energy-envelope method~44! is seen to be in reasonab

FIG. 4. Temporal evolution of the scaled average ene
^E(t)&/kT with additive noise and multiplicative noise. The dash
lines I and II are the predictions from Eq.~44! for kT5200 and
kT54.5, respectively. The dashed line III is the theoretical pred
tion for additive noise withkT54.5. As predicted, the relaxation
proceeds much faster with multiplicative noise: The solid lines
numerical results for multiplicative noise atkT5200 andkT54.5.
It is clear that at higher temperatures, the theory grossly under
mates the relaxation time.
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agreement with the numerical simulations forkT54.5. The
slightly higher equilibration rate from the analytical calcul
tion is due to the truncation in the energy-envelope equa
using the^E2(t)&'2^E(t)&2 relation which yields an uppe
bound on the rate of equilibration of the average energy@2#.
Note that in the case of high temperature (kT5200) the
relaxation time computed from the energy-envelope met
is much smaller than the numerical result, consistent with
violation of the condition~46!.

While the results shown in Fig. 4 do show that the ener
envelope approximation is qualitatively correct within its p
tative domain of validity, it is clear that the actual relaxati
process is not of the precise form~44!. In Fig. 5 we illustrate
this point by plotting

E0@kT2^E~ t !&#

^E~ t !&~kT2E0!
5exp~2l2kTt/v0

2! ~47!

@equivalent to Eq.~44!# against time on a logarithmic scale
the relaxation is clearly nonexponential. The reason for
failure of the approximation is that despite the fact that
uipartition of energy does take place on a relatively sh
time-scale, it is not true that̂x2(t)& can be treated as
constant even at relatively late times.

VI. CONCLUSIONS

We have presented a stochastic leapfrog algorithm
single-particle Brownian motion with multiplicative noise
This method has the advantages of retaining the symple
property in the deterministic limit, ease of implementatio
and second-order convergence of moments for multiplica
noise. Sampling a uniform distribution instead of a Gauss
distribution helps to significantly reduce the computatio
cost. A comparison with the conventional Heun’s algorith
highlights the gain in acuracy due to the new method.
nally, we have applied the stochastic leapfrog algorithm t
nonlinearly coupled oscillator-heat-bath system in order
investigate the effect of multiplicative noise on the nature
the relaxation process.

FIG. 5. The left-hand side of Eq.~47! as a function of time
~straight line! compared with numerical results forkT54.5. Also
shown is a numerical result for the case of additive noise whic
in excellent agreement with the predicted exponential relaxa
with the relaxation time scale51/l0.
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APPENDIX A

In this section we give short descriptions of the Euler a
Heun algorithms referenced in the text. The Euler algorit
is defined by

x̄i~h!5 x̄i~0!1Fi„x̄1~0!, . . . ,x̄n~0!…h

1s i j „~ x̄1~0!, . . . ,x̄n~0!…W̃j~h!. ~A1!

The convergence of the moments of the Euler algorithm
a finite time interval is of orderh for both additive and mul-
tiplicative noise.

The Heun algorithm is defined by

x̄i~h!5 x̄i~0!1 1
2 @Fi„x̄1~0!, . . . ,x̄n~0!…

1Fi„c1~h!,•••,cn~h!…#h

1s i j „x̄1~0!,•••,x̄n~0!…W̃j~h!, ~A2!

where

c i~h!5 x̄i~0!1Fi„x̄1~0!, . . . ,x̄n~0!…h

1s i j „x̄1~0!,•••,x̄n~0!…W̃j~h!. ~A3!

This algorithm has an orderh2 convergence of the moment
for a finite time interval with additive noise and, in gener
the same order of convergence of the moments as the E
algorithm in the presence of multiplicative noise.~More de-
tailed discussions of these algorithms can be found in R
@14#.!

APPENDIX B

The analytic solution of Eqs.~38! for ^x2(t)& ~with white
Gaussian noise! as a function of time in the special case
zero damping, i.e.,g50, can be obtained by solving th
equivalent Fokker-Planck equation@24# for the probability
density f (x,p,t),

]

]t
f ~x,p,t !5F2p

]

]x
2

]F1~p,x!

]p
1

1

2
s2~x!

]2

]p2G f ~x,p,t !.

~B1!

The expectation value of any functionM (x,p;t) can be writ-
ten as

^M ~x,p!&5E
2`

1`

dx dpM~x,p! f ~x,p,t !. ~B2!

is
n
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Equations~B1! and~B2! can be used to yield a BBGKY-like
heirarchy for the evolution of phase-space moments. S
the system we are considering is linear, this heirarchy tr
cates exactly and yields a group of coupled linear ordin
differential equations for the moments^x2&, ^xp&, and^p2&.
These equations can be written as a single third-order t
evolution equation for̂x2&,

d3^x2&

dt3
524h2

d^x2&
dt

12a2^x2&, ~B3!

subject to the initial conditions

^x2~0!&5x2~0!,

^ẋ2~0!&52x~0!p~0!, ~B4!

^ẍ2~0!&52p2~0!22h2x2~0!.

This equation has an analytical solution written as
tt

w
,

ys
ce
-
y

e

^x2~ t !&5c1 exp~r 1t !1c2 exp~r 2t !1c3 exp~r 3t !, ~B5!

wherec1 , c2, andc3 are constants depending on initial co
ditions, andr 1 , r 2 andr 3 are the roots of a third-order aleg
braic equation

2a224h2x2x350, ~B6!

which gives

r 15~A64/27h61a41a2!1/32~A64/27h61a42a2!1/3,

r 25 1
2 ~11A3i !~A64/27h61a42a2!1/3

2 1
2 ~12A3i !~A64/27h61a41a2!1/3, ~B7!

r 35r 2* ,

where the superscript * represents complex conjugation.
existence of the positive real rootr 1 implies that̂ x2(t)& will
have an exponential growth in time.
c

-
n

d J.
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