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Space-charge effects play an important role in high intensity and high brightness particle accelerators.
These effects were generally studied self-consistently by solving the Vlasov-Poisson equations using a
particle-in-cell method in the accelerator community. In this paper, we propose an alternative method
to simulate the space-charge effects in the accelerator. Instead of solving the Vlasov-Poisson equations,
the proposed approach solves the Schrödinger-Poisson equations to study the space-charge effects in
accelerators. Using a quantum Schrödinger approach reduces the original problem from six- or four-
dimensional phase space down to three or two spatial dimensions. It also provides a possibility to simulate
accelerator beam physics on quantum computers by evolving the wave function through quantum gates.
Benchmarks of a coasting proton beam through a focusing drift defocusing drift lattice show excellent
agreement between the quantum Schrödinger method and the particle-in-cell method.

DOI: 10.1103/PhysRevAccelBeams.25.034602

I. INTRODUCTION

The nonlinear space-charge effects from the Coulomb
interactions inside a charged particle beam can degrade
beam quality, drive instabilities, generate halo particles and
beam losses in high intensity and high brightness accel-
erators. These effects were generally studied self-consis-
tently by solving the Vlasov-Poisson equations using a
particle-in-cell (PIC) method in the accelerator community
[1–11]. In the PIC method, a number of macroparticles in
six-dimensional or four-dimensional phase space are used
to represent the distribution function. These macroparticles
are advanced through the accelerator subject to both the
external accelerating/focusing fields and the space-charge
fields in phase space. The space-charge fields are obtained
by solving the Poisson equation on a computational grid.
Deposition and interpolation are employed to generate
charge density distribution on the grid (from macropar-
ticles) and to obtain the space-charge fields on individual
macroparticles from the fields on the grid at each time step.
The computational cost is linearly proportional to the
number of macroparticles, which makes the simulation
effective for many applications.
The PIC method solves the Vlasov-Poisson equations by

advancing macroparticles through accelerators in phase
space. In this paper, we propose an alternative method to
solve the Vlasov-Poisson equations for the study of the

space-charge effects in accelerators by using a quantum
Schrödinger approach. This approach solves the
Schrödinger-Poisson equations in a complex spatial
domain and reduces the original problem from six or four
dimensions to three or two dimensions. The Schrödinger
approach has been used to study plasma physics and cold
dark matter in cosmology [12–19]. To the best of our
knowledge, this method has not been used in the accel-
erator beam physics to study the space-charge effects in
high energy accelerators, where the relativistic effects are
important. In this paper, we adopt this approach to
simulating the space-charge effects in the high intensity
and high brightness accelerators. Using the quantum
Schrödinger method also provides a possibility to simulate
classical beam dynamics on quantum computers.
The organization of this paper is as follows: after the

Introduction, we present the quantum Schrödinger space-
charge model in Sec. II; carry out benchmark between
the quantum Schrödinger method and the symplectic PIC
method using a coasting proton beam transporting through
a focusing drift defocusing drift (FODO) lattice in Sec. III;
and draw conclusions in Sec. IV.

II. QUANTUM SCHRÖDINGER
SPACE-CHARGE MODEL

The accelerator beam dynamics including space-charge
effects is governed by the collisionless Vlasov-Poisson
equations:

∂f
∂t þ ½f;H� ¼ 0; ð1Þ

where ½; � is the Poisson bracket, fðr;p; tÞ is the distribution
function in four- or six-dimensional phase space, and H is
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the Hamiltonian that includes contributions from both
external focusing/accelerating potentials and the space-
charge Coulomb potential ϕ that can be obtained from
the solution of the Poisson equation:

∇2ϕ ¼ −
ρ

ϵ0
; ð2Þ

where ϵ0 is the permittivity of vacuum and ρ ¼ R
d3p × f

is the charge density distribution.
The above Vlasov-Poisson equation can be approxi-

mated using the Husimi representation of the phase space
distribution F ðr;p; tÞ ¼ jΨðr;p; tÞj2 [20], where

Ψðr;p; tÞ ¼
�

1

2πℏ

�
3=2

�
1

2πσ2

�
3=4

Z
d3x

× ψðx; tÞ exp
�
−
jr − xj2
4σ2

− i
p · x
ℏ

�
ð3Þ

and the wave function ψ follows the solution of the
Schrödinger equation:

iℏ
∂ψ
∂t ¼ −

ℏ2

2m
∇2ψ þ Vðx; y; zÞψ ; ð4Þ

where the potential V includes both the external potential
and the space-charge potential and σ denotes a smoothing
parameter. Given the evolution of the wave function, the
evolution of phase space distribution F through the Husimi
representation can be approximated as [21]

∂F
∂t þ ½F ; H� ¼ OðℏÞ þOðℏ2Þ þ � � � : ð5Þ

The above equation approaches the Vlasov Eq. (1) as ℏ
goes to 0. This suggests that by choosing a small ℏ value,
the wave function solution of the Schrödinger equation
could be used to construct a phase space distribution that
approximates the original phase distribution in the Vlasov
equation.
Now we consider an accelerator system that consists of a

coasting beam and an external quadrupole focusing lattice.
The Hamiltonian of the beam using z as an independent
variable can be written as [22]

H̄ðzÞ ¼ 1

2
ðp̄2

x þ p̄2
yÞ þ Vðx; y; zÞ; ð6Þ

where p̄x;y ¼ px;y=p0 is normalized momentum, p0 ¼
mγ0v0 the reference particle momentum, v0 the speed of
the reference particle, γ0 the relativistic factor of the
reference particle, and V the potential given as

V ¼ 1

2
kðzÞðx2 − y2Þ þ 1

2
Kϕ; ð7Þ

where kðzÞ ¼ qgðzÞ=p0 is the effective external quadrupole
focusing strength, gðzÞ is the quadrupole gradient,
K ¼ qI=ð2πϵ0p0v20γ

2
0Þ is the generalized perveance, and

I is the beam current. In this Hamiltonian, the effects of
the direct Coulomb electric potential and the longitudinal
vector potential are combined together to account for the
space-charge effects.
From the above equations, the corresponding

Hamiltonian using time t as the independent variable
can be obtained as

HðtÞ ¼ 1

2mγ0
ðp2

x þ p2
yÞ þ p0v0Vðx; y; zÞ: ð8Þ

The Schrödinger equation for the above Hamiltonian can be
written as

iℏ
∂ψ
∂t ¼ −

ℏ2

2mγ0
∇2ψ þ p0v0Vðx; y; zÞψ : ð9Þ

Here, the relativistic effects on the beam are included in the
above equation. This equation can be rewritten using z as
the independent variable as

iℏ
∂ψ
∂z ¼ −

ℏ2

2p0

∇2ψ þ p0Vðx; y; zÞψ ð10Þ

or

∂ψ
∂z ¼ iℏ

2p0

∇2ψ − i
p0

ℏ
Vðx; y; zÞψ : ð11Þ

The above Schrödinger equation can be solved numeri-
cally using a Lie-Trotter splitting-operator method [23]. A
second-order approximation for one step advance of the
wave function can be written as

ψðzþ τÞ ¼ e
iℏτ
4p0

∇2

e−i
p0
ℏ Vτe

iℏτ
4p0

∇2

ψðzÞ; ð12Þ
where τ is the advance step size, and each exponential
function denotes an operator acting on the wave function ψ
for either half step or one step. In the above approximation,
we assumed that the potential is constant during one
step, which is valid for a quadrupole focusing lattice. The

exponential function e
iℏτ
4p0

∇2

involves the Laplacian partial
differential operator that can be solved using a Galerkin
spectral method [24–28]. Assuming that the wave function
is confined inside a rectangular pipe subject to the
boundary conditions:

ψðx ¼ 0; yÞ ¼ 0 ð13Þ

ψðx ¼ a; yÞ ¼ 0 ð14Þ

ψðx; y ¼ 0Þ ¼ 0 ð15Þ

JI QIANG PHYS. REV. ACCEL. BEAMS 25, 034602 (2022)

034602-2



ψðx; y ¼ bÞ ¼ 0; ð16Þ
where a is the horizontal width of the pipe and b the vertical
width of the pipe. The wave function can be approximated as

ψðx; yÞ ¼
XNl

l¼1

XNm

m¼1

ψ lm sinðαlxÞ sinðβmyÞ; ð17Þ

where

ψ lm ¼ 4

ab

Z
a

0

Z
b

0

ψðx; yÞ sinðαlxÞ sinðβmyÞ dxdy; ð18Þ

where αl ¼ lπ=a and βm ¼ mπ=b. Using the above spectral
representation, the Laplacian operator in the above exponential
operator can be replaced by −γ2lm ¼ −ðα2l þ β2mÞ and the
evolution of thewave function in the frequency domain through
the first half step can be written as

ψ lmðzþ τ=2Þ ¼ e−
iℏτ
4p0

γ2lmψ lmðzÞ: ð19Þ
Using Eq. (17), the wave function ψðzþ τ=2Þ in the spatial
domain can be obtained from the ψ lmðzþ τ=2Þ through the
inverse sine function transformation. After the first half step, the
wave function can be advanced for one step using the potential
V as

ψ̃ðzþ τ=2Þ ¼ e−i
p0
ℏ Vτψðzþ τ=2Þ: ð20Þ

After this step, the wave function will be advanced through the
second half step following the sine function transform of the
wave function ψ̃ðzþ τ=2Þ:

ψ lmðzþ τÞ ¼ e−
iℏτ
4p0

γ2lm ψ̃ lmðzþ τ=2Þ: ð21Þ
The wave function after one step ψðzþ τÞ can be obtained
from the inverse sine transformation equation (17). This process
can be repeated for many steps until the beam transports
through the lattice.
In order to advance the wave function through Eq. (20),

the space-charge potential ϕ in the Hamiltonian potential
term V is needed from the solution of the following Poisson
equation:

∂2ϕ

∂x2 þ
∂2ϕ

∂y2 ¼ −4πρ; ð22Þ

where ϕ is the electric potential, and ρ is the particle density
distribution of the beam that can be obtained from the wave
function:

ρðx; yÞ ¼
Z Z

e
−ðx−x0Þ2

2σ2x e
−ðy−y0Þ2

2σ2y ψðx0; y0Þψ�ðx0; y0Þdx0dy0;
ð23Þ

where σx and σy are smooth parameters in the x and y
dimension respectively.
The electric potential inside the rectangular perfectly

conducting pipe follows the same boundary conditions as
the wave function:

ϕðx ¼ 0; yÞ ¼ 0 ð24Þ
ϕðx ¼ a; yÞ ¼ 0 ð25Þ
ϕðx; y ¼ 0Þ ¼ 0 ð26Þ
ϕðx; y ¼ bÞ ¼ 0: ð27Þ

Given the boundary conditions in Eqs. (24)–(27), the
electric potential ϕ and the source term ρ can be approxi-
mated using two sine functions following the numerical
spectral method:

ρðx; yÞ ¼
XNl

l¼1

XNm

m¼1

ρlm sinðαlxÞ sinðβmyÞ ð28Þ

ϕðx; yÞ ¼
XNl

l¼1

XNm

m¼1

ϕlm sinðαlxÞ sinðβmyÞ; ð29Þ

where

ρlm ¼ 4

ab

Z
a

0

Z
b

0

ρðx; yÞ sinðαlxÞ sinðβmyÞ dxdy ð30Þ

ϕlm ¼ 4

ab

Z
a

0

Z
b

0

ϕðx; yÞ sinðαlxÞ sinðβmyÞ dxdy; ð31Þ

where αl ¼ lπ=a and βm ¼ mπ=b. For a smooth function,
this spectral approximation has an accuracy whose numeri-
cal error scales asO½expð−cNÞ� with c > 0, where N is the
number of the basis function (i.e., mode number in each
dimension) used in the approximation. By substituting
the above expansions into the Poisson equation (22)
and making use of the orthonormal condition of the sine
functions, we obtain

ϕlm ¼ 4πρlm
γ2lm

; ð32Þ

where γ2lm ¼ α2l þ β2m.
In order to solve the Schrödinger equation, one needs to

know the initial condition of the wave function. Given the
initial phase space distribution fðr;p; 0Þ of the beam, the
initial wave function can be constructed from [14]

ψðr; 0Þ ∝
X
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðr;p; 0Þ

p
eip·r=ℏþ2πϕrand;p ; ð33Þ

where ϕrand;p is a uniformly distributed random number
between zero and one at a given momentum. The inclusion
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of the random phase is to avoid the coherence summation
of different momentum plane waves.
From the wave function of the Schrödinger equation, one

can obtain the second-order moments of the beam in the
x − px plane as [15]

hx2i ¼
Z Z

x02ψψ�dx0dy0 ð34Þ

hp2
xi ¼ ℏ2

Z Z ∂ψ
∂x0

∂ψ�

∂x0 dx
0dy0 ð35Þ

hxpxi ¼ ℏ Im

�Z Z
x0
∂ψ
∂x0 ψ

�dx0dy0
�
; ð36Þ

where Im denotes the imaginary part of the integral. The
second-order moments in the y − py plane can be attained
by replacing x with y. The emittance of the beam can be
calculated using these moments as

ϵx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihðpx=p0Þ2i − hxðpx=p0Þi2

q
ð37Þ

ϵy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hy2ihðpy=p0Þ2i − hyðpy=p0Þi2

q
: ð38Þ

III. BENCHMARK EXAMPLES

In this section, we tested the above quantum Schrödinger
approach with three examples and compared the simulation
results with those from a symplectic particle-in-cell (PIC)
solver [29]. In these examples, we simulated a 1 GeV
coasting proton beam transporting through a linear periodic
quadrupole focusing and defocusing (FODO) channel
inside a rectangular perfectly conducting pipe. A schematic
plot of the lattice is shown in Fig. 1. It consists of a 0.1 m
focusing quadrupole magnet and a 0.1 m defocusing
quadrupole magnet within a single period. The total length
of the period is one meter. The zero current phase advance
through one lattice period is 85.0 degrees. The initial
transverse normalized emittance of the proton beam is
1 mmmrad with a 4D Gaussian distribution.
In the first example, we used the above Schrödinger

method to simulate the proton beam transporting through
five FODO periods without including the space-charge
effects. Figure 2 shows the horizontal and vertical root
mean square (rms) size, rms momentum, and beam Twiss
alpha (e.g., alphax ¼ −hxpxi=ϵx) evolutions through the
lattice from the solutions of the above Schrödinger
equation and from the PIC solver. Here, the potential term
includes only the external focusing potential. The space-
charge Coulomb interactions were not included in both

simulations. The aperture size of the rectangular pipe is 12
by 12 mm. The number of grid points are 5120 by 5120
with σx=hx ¼ σy=hy ¼ 30 and ℏ=p0 ¼ 3.0 × 10−8. In the
quantum representation, momentum is proportional to ℏ
and wave number. The maximum momentum that can be
attained is set by the ℏ and the largest wave number that can
be represented on the computational grid. On one hand, the
ℏ should be chosen as small as possible in order to attain
good phase space resolution and approximation to the
Vlasov equation. This suggests the numerical de Broglie
wavelength 2πℏ=p0 should be much less than the system
physical scale length. On the other hand, the smaller ℏ
reduces the attainable momentum for a fixed wave number.
The largest wave number in the x or the y direction is given
by πNx=a or πNy=b. Here, Nx and Ny are the number of
grid cells in the x and y dimension respectively. The choice
of the ℏ results from a balance of the requirements of
accuracy and computational efficiency in the space-charge
simulation.
There are four curves in each plot of the above figure.

Only two are visible due to the overlap between the
quantum solutions and the PIC solutions. The quantum
Schrödinger approach agrees with the PIC method very
well in this example. Figure 3 shows the scaled rms
horizontal and vertical emittance evolutions [ϵðzÞ=ϵð0Þ]
through this lattice from both the Schrödinger solver and
the PIC solver. Without the nonlinear space-charge forces,
the proton beam emittance through a linear focusing lattice
should stay constant. Both methods show the constant
emittance evolution through the lattice. There are four
curves in this figure, two from the quantum Schrödinger
solution, two from the PIC simulation. They all overlap
with each other in this example.
In the second example, the space-charge effects were

turned on for a 100 A proton beam. The depressed phase
advance per period is 72.0 degrees for this case. The initial
distribution is a rms matched four-dimensional Gaussian
distribution including the space-charge effects. Figure 4
shows the horizontal and vertical rms size, rms momentum,
and beam Twiss alpha parameter evolutions through the
FODO lattice from the solutions of the above Schrödinger-
Poisson equations and from the PIC solver. Here, the
potential term includes both the external focusing potential
and the space-charge potential. The matched rms beam
sizes show regular oscillation through the lattice. The rms
beam divergence oscillates inside the drifts and decreases
inside the quadrupoles. The Twiss parameter alpha oscil-
lates between the horizontal (x) and the vertical (y)
dimension through the lattice. There are four curves in
each plot of the above figure, two from the quantum
Schrödinger solver, two from the PIC solver. The results
from the two solvers agree with each other very well and
overlap on the top of each other. Figure 5 shows the scaled
emittance evolutions through the lattice from the
Schrödinger solver and from the PIC solver. Due to the

FIG. 1. Schematic plot of the FODO lattice used in the
benchmark examples.
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presence of the space-charge effects, the emittances of the
proton beam no longer stay constant even with an initial
matched distribution. The nonlinear space-charge effects
cause small emittance growth in this matched case through
the lattice. This slight emittance growth is observed from
both the quantum simulation and from the PIC simulation.
The relative discrepancy between these two simulations is
less than 1%.
In the third example, we introduced a mismatch to the

proton beam initial distribution. Here both initial matched
horizontal and vertical sigmas were increased by 20%
while the divergence sigmas were decreased by about 20%.
Figure 6 shows the horizontal and vertical rms size, rms
momentum, and beam Twiss alpha parameter evolutions
through the lattice from the solutions of the above
Schrödinger-Poisson equations and from the solutions of
the PIC solver. Here, the potential term in the Hamiltonian
includes both the external focusing potential and the space-
charge potential from the 100 A beam current. The aperture
size of the conducting pipe was increased to 16 by 16 mm

FIG. 2. Horizontal (x) and vertical (y) rms size (top left), rms momentum (top right), and beam Twiss alpha parameter (bottom)
evolution through a five period FODO lattice from the quantum Schrödinger method (red and green) and from the PIC method (blue and
magenta) without including the space-charge effects.

FIG. 3. Horizontal (x) and vertical (y) rms emittance evolution
through a five period FODO lattice from the quantum Schrö-
dinger method (red and green) and from the PIC method (blue
and magenta) without including the space-charge effects.
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to avoid particle losses. The initial mismatched distribution
causes proton rms size and divergence growth within the
first 50 periods and attains a quasisteady state after
60 periods. The Twiss parameter alpha was not signifi-
cantly affected by the initial mismatch. There are four
curves in each plot of the above figure. Two curves
corresponding to the horizontal and vertical dimensions
are from the quantum simulation results and two from the
PIC simulation results. The quantum simulation results
agree with the PIC simulation results very well and the
two curves from the quantum simulation overlap the two
curves from the PIC simulation. Figure 7 shows the scaled
horizontal and the vertical rms emittance evolutions
through the lattice from the solutions of the quantum
Schrödinger method and from the PIC method. The initial
mismatch causes nearly 50% horizontal emittance growth
and 30% vertical emittance growth before saturation after
150 lattice periods. Such growth is captured in both the
quantum simulation and the PIC simulation. The quantum
simulation results agree with those from the PIC simulation
very well.

FIG. 4. Horizontal (x) and vertical (y) rms size (top left), rms momentum (top right), and beam Twiss alpha parameter (bottom)
evolution through a five period FODO lattice from the quantum Schrödinger method (red and green) and from the PIC method (blue and
magenta) with the space-charge effects.

FIG. 5. Four-dimensional normalized rms emittance evolution
through a five period FODO lattice from the quantum Schrö-
dinger method (red and green) and from the PIC method (blue
and magenta) with the space-charge effects.
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IV. DISCUSSION AND CONCLUSIONS

In this paper, we proposed a quantum Schrödinger
approach to simulate space-charge effects in high intensity
and high brightness beams of the particle accelerator. The
computational cost of this approach scales asO½N logðNÞ�,
where N is the number of grid points. The computational
cost of the PIC method scales as OðNpÞ, where Np is the
number of macroparticles. If the total number of grid points
in two or three dimensions is less than the total number of
macroparticles in four or six dimensions, the quantum
Schrödinger method can be more effective. Meanwhile,
using a quantum wave function not only reduces the
dimensionality of the problem by half but also provides
a possibility to do accelerator beam dynamics simulation
on quantum computers. A quantum algorithm has been
proposed to solve the Schrödinger equation on quantum
computers [30]. That algorithm used the Lie-Trotter split-
ting method to advance the wave function through multiple
quantum gates. It made use of the quantum fast Fourier
transform that scales as the Of½logðNÞ�2g for the advance

FIG. 6. Horizontal (x) and vertical (y) rms size (top left), rms momentum (top right), and beam Twiss alpha parameter (bottom)
evolution through a five period FODO lattice from the quantum Schrödinger method (red and green) and from the PIC method (blue and
magenta) with the mismatched space-charge effects.

FIG. 7. Horizontal (x) and vertical (y) rms emittance evolution
through a five period FODO lattice from the quantum Schrö-
dinger method (red and green) and from the PIC method (blue
and magenta) with the mismatched space-charge effects.
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of the kinetic operator. For a quadratic external potential,
the total computational cost can scale as Of½logðNÞ�2g.
This method might be extended to include the space-charge
effects and will be explored in our future study.
In this paper, we used a high intensity coasting proton

beam transporting through a periodic FODO lattice to
benchmark the proposed quantum Schrödinger method
with a symplectic particle-in-cell solver. Using an example
without the space-charge effects, an example with the
matched space-charge effects, and an example with
the mismatched space-charge effects, we showed that the
quantum Schrödinger simulation results agree with the
particle-in-cell simulation results very well. This suggests
that the quantum Schrödinger method could be used as an
alternative approach to study the space-charge effects in
high intensity and high brightness beams.
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