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The nonlinear space-charge effects in a high intensity or high brightness accelerator can have a
significant impact on the beam properties through the accelerator. These effects are included in the
accelerator design via self-consistent multiparticle tracking simulations. In order to study the sensitivity
of the final beam’s properties with respect to the accelerator design parameters, one has to carry out the
time-consuming space-charge simulation multiple times. In this paper, we propose a differentiable self-
consistent space-charge simulation model that enables the study of such sensitivity through only one
simulation. This model differs from previous applications of the truncated power series algebra by
connecting the beam properties directly with the accelerator design parameters in the presence of collective
space-charge effects so that the local derivative of the beam properties with respect to the design parameters
can be computed during the simulation. Such a model can also be used with gradient-based numerical
optimizers for accelerator design optimizations including the self-consistent space-charge effects.
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I. INTRODUCTION

The nonlinear space-charge effects from the Coulomb
interaction inside a charged particle beam can have a
significant impact on the beam transport through an
accelerator by causing beam emittance growth, halo for-
mation, and even particle losses. These effects are normally
studied in the accelerator design via self-consistent
simulations. To simulate the space-charge effects self-
consistently, multiparticle tracking with a particle-in-cell
method has been widely employed in the accelerator
community [1–11]. However, none of these codes directly
calculates the derivatives of the beam property with respect
to the accelerator machine parameters.
The derivatives of the beam property with respect to the

accelerator machine parameters are important in the accel-
erator design. These derivatives provide quantitative mea-
surements of the sensitivity of the final beam property
with respect to the machine parameters. Such sensitivities
can be used to set the tolerance limits of the corresponding
machine parameters. In a typical machine design, the
sensitivity can be obtained by running the space-charge
simulation multiple times, each time with a small change in
a single machine parameter. A numerical scheme such as
the finite difference method is used to calculate the

derivative of the beam property with respect to that
parameter. In an accelerator, there can be hundreds and
thousands machine parameters. To compute the derivatives
with respect to all machine parameters using the finite
difference method will involve hundreds and thousands
self-consistent space-charge simulations and can be very
time consuming. In this paper, we propose a differentiable
self-consistent space-charge simulation model. The deriv-
atives of the final beam property with respect to the entire
machine parameters can be obtained through a single
simulation. Such a differentiable space-charge simulation
can also be integrated into a gradient-based optimizer for
accelerator design optimization.
The differentiable simulator is a simulator that can

automatically compute derivatives of the simulation result
with respect to its input parameters. This can be done
through automatic differentiation [12] that has been widely
used in the artificial intelligent/machine learning (AI/ML)
community to train a neural network through gradient-
based optimization method. A number of AI/ML frame-
works such as PyTorch [13] and TensorFlow [14] include
this capability. Recently, a differentiable model was devel-
oped to optimize magnet design by implementing the
nonparametric version of the Preisach model output using
the PyTorch framework [15]. In this paper, instead of using
the automatic differentiation framework of the AI/ML
community, we proposed a differentiable self-consistent
space-charge simulation model using the truncated power
series algebra that was developed in the accelerator
community. This method can also be implemented in many
other available self-consistent space-charge codes for high
intensity, high brightness accelerator design study.
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The truncated power series algebra (TPSA) was first
introduced by Berz in 1989 for accelerator applications
[16]. Since then, it has been used to calculate transfer maps
of beamline elements in several optics codes [17–20]. It
was also used to calculate the space-charge potential/fields
in the fast multipole method [21–23] and to solve the
Poisson’s equation [24]. Recently, it was also used to
extract transfer maps in the presence of space-charge effects
[25–27]. However, so far, these applications of the TPSA
have no direct connections to the control parameters in
the accelerator design. In this study, we present a new
application of the TPSA to the accelerator design in the
self-consistent space-charge simulation. In this differen-
tiable space-charge model, the beam properties such as
emittance are connected to the accelerator control param-
eters. The novelty of this model is to combine the TPSA
and the self-consistent space-charge algorithm to compute
the local derivative of beam parameters with respect to
beamline control variables. This enables to study the
sensitivity of the final beam property with respect to these
control variables through only one simulation, which is
different from the other uncertainty quantification methods
such as the surrogate model method in which a number of
simulations have to be used to train the model [28].
The organization of this paper is as follows: after the

introduction, we introduce the truncated power series
algebra in Sec. II, present a differentiable space-charge
model in Sec. III, two application examples in Sec. IV, and
draw conclusions in Sec. V.

II. TRUNCATED POWER SERIES ALGEBRA

The truncated power series algebra (TPSA) is an
effective tool to calculate derivatives of a function with
respect to its variables using an algebraic method. Consider
the Taylor series approximation of a one-dimensional
function fðxÞ at a point x0,

fðxÞ ¼ fðx0Þ þ ðx − x0Þf0ðx0Þ þ
1

2!
ðx − x0Þ2f00ðx0Þ þ � � �

þ 1

N!
ðx − x0ÞNfðNÞðx0Þ ð1Þ

the derivatives in the above equation can be calculated
using a numerical finite difference method, for example,

f0ðx0Þ ¼
fðx0 þ δÞ − fðx0Þ

δ
þOðδÞ: ð2Þ

Such a way to calculate the derivative introduces numeri-
cal errors and requires multiple function evaluations for a
multivariable function. In the truncated power series algebra
method, the derivative up to Nth order can be regarded as a
point in a function space spanned by the bases:

1; ðx − x0Þ;
1

2!
ðx − x0Þ2;…;

1

N!
ðx − x0ÞN ð3Þ

These derivatives can be represented as a vector:

Dfx0 ¼ ½fðx0Þ; f0ðx0Þ; f00ðx0Þ;…; fðNÞðx0Þ�: ð4Þ

Such a vector is also called a TPSA variable. For
example, for a constant c, its derivative representation is
Dc ¼ ½c; 0; 0;…; 0�, and for a variable x, Dx ¼ ½x; 1; 0;
…; 0�. By using the above derivative vector representation,
the derivatives of function with respect to its variable can be
written as the function of that derivative vector, i.e.,

Dfx ¼ fðDxÞ: ð5Þ

The computing of the derivatives of a function becomes the
algebraic function evaluations.
The evaluation of the derivative vector inside a function

can be broken down as the operations of addition and
multiplication. Given two derivative vectors Dfx0¼½fðx0Þ;
f0ðx0Þ;f00ðx0Þ;…;fðNÞðx0Þ�¼½a0;a1;a2;…;aN � and Dfx1 ¼
½fðx1Þ;f0ðx1Þ;f00ðx1Þ;…;fðNÞðx1Þ�¼ ½b0;b1;b2;…;bN �, the
sum of two vectors will be

Dfx0 þDfx1 ¼ ½a0 þ b0; a1 þ b1; a2 þ b2;…; aN þ bN �
ð6Þ

The multiplication of these two vectors will be

Dfx0 ×Dfx1 ¼ ½a0b0; a0b1 þ a1b0; a0b2 þ 2a1b1

þ a2b0;…; cN �; ð7Þ

where cN ¼ P
N
k¼0

N!
k!ðN−kÞ! akbN−k. Using the above rules of

addition and multiplication, the operation of a derivative
vector inside a function can be calculated algebraically.
For example, the reciprocal of a derivative vector 1=Dfx0
can be calculated as

Df−1x0 ¼ ½a0; a1; a2;…; aN �−1

¼
�
1

a0
;−

a1
a20

;
2a21
a30

−
a2
a20

; � � �
�

ð8Þ

For a concrete example, fðxÞ ¼ 1
1þxþx2, one can use the

above derivative vector operations to obtain the first and the
second derivative of this function at x ¼ 1. That is, x ¼ 1,
Dx ¼ ½1; 1; 0�, and

Df1 ¼ fðD1Þ

¼ 1

1þ ½1; 1; 0� þ ½1; 1; 0�2

¼
�
1

3
;−

1

3
;
4

9

�
; ð9Þ
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This yields the first derivative f0ð1Þ ¼ − 1
3
and the second

derivative f00ð1Þ ¼ 4
9
. The truncated power series algebra

changes the calculation of the derivatives of a function
with respect to its individual variable into the evaluation
of a function of derivative vector, i.e., a function of
TPSA variable.
The above single variable function example can be

extended to a multiple variable function with the more
complicated multiplication rule for the derivative vector
[29]. The truncated power series algebra libraries have
been developed to handle some general special functions
such as the exponential function and the trigonometry
function [30,31].

III. DIFFERENTIABLE SELF-CONSISTENT
SPACE-CHARGE MODEL

The above truncated power series algebra is used to
develop a differentiable self-consistent space-charge model
using TPSA variables. The self-consistent space-charge
simulation of a system of Np particles is done by solving
the following Hamilton equations:

dri
ds

¼ ∂H
∂pi

ð10Þ

dpi

ds
¼ −

∂H
∂ri

; ð11Þ

where Hðr1;p1; r2;p2;…; sÞ denotes the Hamiltonian of
the system, and ri and pi denote 6Np or 4Np-vector
canonical coordinates and momenta of particle i, respec-
tively. Let ζ denote a 6N or 4N vector of coordinates, the
above Hamilton’s equation can be rewritten as

dζ
ds

¼ −½H; ζ�; ð12Þ

where [,] is the Poisson bracket. A formal solution for the
above equation after a single step τ can be written as

ζðτÞ ¼ exp½−τð∶H∶Þ�ζð0Þ ð13Þ

Here, we have defined a differential operator ∶H∶ as
∶H∶g ¼ ½H; g�, for arbitrary function g. For a coasting
beam, the Hamiltonian can be written as H ¼ H1 þH2,
where

H1 ¼
XNp

i¼1

p2
i =2þ

XNp

i¼1

qAzðriÞ ð14Þ

where Az denotes the longitudinal vector potential asso-
ciated with the external focusing fields and

H2 ¼
K
4

XNp

i¼1

XNp

j¼1

φðri; rjÞ ð15Þ

where K ¼ qI=ð2πϵ0p0v20γ
2
0Þ is the generalized perveance,

q is the charge of particle, I is the beam current, ϵ0 is the
dielectric constant in vacuum, p0 is the momentum of the
reference particle, v0 is the speed of the reference particle,
γ0 is the relativistic factor of the reference particle, and φ is
the space charge Coulomb interaction potential. In this
Hamiltonian, the effects of the direct electric potential and
the longitudinal vector potential are combined together.
For a Hamiltonian that can be written as a sum of two
terms H ¼ H1 þH2, an approximate solution to the above
formal solution can be written as

ζðτÞ ¼ exp½−τð∶H1∶ þ ∶H2∶Þ�ζð0Þ

¼ exp

�
−
1

2
τ∶H1∶

�
expð−τ∶H2∶Þ

× exp

�
−
1

2
τ∶H1∶

�
ζð0Þ þOðτ3Þ: ð16Þ

Let expð− 1
2
τ∶H1∶Þ define a transfer map M1 and

expð−τ∶H2∶ Þ a transfer map M2, for a single step, the
above splitting results in a second order numerical inte-
grator for the original Hamilton’s equation as

ζðτÞ ¼ MðτÞζð0Þ
¼ M1ðτ=2ÞM2ðτÞM1ðτ=2Þζð0Þ þOðτ3Þ ð17Þ

For the external focusing with quadrupole magnets, the
single step transfer map M1 in the focusing plane can be
written as

M1ðτÞ ¼

0
B@ cosð ffiffiffi

k
p

τÞ 1ffiffi
k

p sinð ffiffiffi
k

p
τÞ

−
ffiffiffi
k

p
sinð ffiffiffi

k
p

τÞ cosð ffiffiffi
k

p
τÞ

1
CA ð18Þ

and in the defocusing plane as

M1ðτÞ ¼

0
B@ coshð ffiffiffi

k
p

τÞ 1ffiffi
k

p sinhð ffiffiffi
k

p
τÞ

−
ffiffiffi
k

p
sinhð ffiffiffi

k
p

τÞ coshð ffiffiffi
k

p
τÞ

1
CA; ð19Þ

where k is the normalized focusing strength k ¼ qg=p0 and
g is the magnetic field gradient. For the space-charge
Hamiltonian H2ðrÞ, the single step transfer map M2 can
be written as

riðτÞ ¼ rið0Þ ð20Þ

piðτÞ ¼ pið0Þ −
∂H2ðrÞ
∂ri

τ: ð21Þ
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The electric Coulomb potential in the Hamiltonian H2

can be obtained from the solution of the Poisson equation.
In the following, we assume that the coasting beam is inside
a rectangular perfectly conducting pipe. In this case, the
two-dimensional Poisson’s equation can be written as

∂
2ϕ

∂x2
þ ∂

2ϕ

∂y2
¼ −4πρ; ð22Þ

where ϕ is the electric potential and ρ is the particle density
distribution of the beam.
The boundary conditions for the electric potential inside

the rectangular perfectly conducting pipe are as follows:

ϕðx ¼ 0; yÞ ¼ 0 ð23Þ

ϕðx ¼ a; yÞ ¼ 0 ð24Þ

ϕðx; y ¼ 0Þ ¼ 0 ð25Þ

ϕðx; y ¼ bÞ ¼ 0; ð26Þ

where a is the horizontal width of the pipe and b is the
vertical width of the pipe.
Given the boundary conditions in Eqs. (23)–(26), using a

Galerkin spectral approximation method, one obtains the
space-charge Hamiltonian H2 as [32]:

H2 ¼ 4π
K
ab

1

Np

XNp

i¼1

XNp

j¼1

XNl

l¼1

XNm

m¼1

1

γ2lm
sinðαlxjÞ

× sinðβmyjÞ sinðαlxiÞ sinðβmyiÞ ð27Þ

The resultant one-step symplectic transfer map M2 of the
particle i with this Hamiltonian is given as

pxiðτÞ ¼ pxið0Þ − τ
K
2

XNl

l¼1

XNm

m¼1

ϕlmαl cosðαlxiÞ sinðβmyiÞ

pyiðτÞ ¼ pyið0Þ − τ
K
2

XNl

l¼1

XNm

m¼1

ϕlmβm sinðαlxiÞ cosðβmyiÞ;

ð28Þ

where the space-charge potential in the spectral domain is
given as

ϕlm ¼ 4π
4

ab
1

Np

XNp

j¼1

1

γ2lm
sinðαlxjÞ sinðβmyjÞ: ð29Þ

Here, both pxi and pyi are normalized by the reference
particle momentum p0.
In the differentiable space-charge simulation, the above

space-charge model will be rewritten using TPSAvariables.

The phase space coordinates ri and pi of the particle i will
be replaced by the corresponding TPSA variables Dri and
Dpi defined in the last section. The potential ϕlm is
replaced by Dϕlm of the TPSA variable. The momentum
updates after a single step due to the space-charge effects
are given by

DpxiðτÞ ¼Dpxið0Þ

−Dτ
K
2

XNl

l¼1

XNm

m¼1

Dϕlmαl cosðαlDxiÞ sinðβmDyiÞ

DpyiðτÞ ¼Dpyið0Þ

−Dτ
K
2

XNl

l¼1

XNm

m¼1

Dϕlmβm sinðαlDxiÞ cosðβmDyiÞ;

ð30Þ

where the space-charge potential in TPSA variable is

Dϕlm ¼ 4π
4

ab
1

Np

XNp

j¼1

1

γ2lm
sinðαlDxjÞ sinðβmDyjÞ ð31Þ

The map corresponding to the external quadrupole field can
also be written in TPSA variable as

M1ðτÞ ¼

0
B@ cosð ffiffiffiffiffiffiffi

Dk
p

DτÞ 1ffiffiffiffiffi
Dk

p sinð ffiffiffiffiffiffiffi
Dk

p
DτÞ

−
ffiffiffiffiffiffiffi
Dk

p
sinð ffiffiffiffiffiffiffi

Dk
p

DτÞ cosð ffiffiffiffiffiffiffi
Dk

p
DτÞ

1
CA

ð32Þ

where Dk is the TPSA variable of the quadrupole focusing
strength, and Dτ is the TPSA variable of the step size that
is the quadrupole length divided by the number of steps.
A similar expression can be written in the defocusing plane
of the quadrupole.
The charged particle beam initial distribution parameters,

beam energy, and current can also be written using TPSA
variables if needed. The final beam properties such as
emittances are defined using the TPSA variables. The
horizontal emittance Dϵx is given as

Dϵx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dhx2iDhp2

xi − ðDhxpxiÞ2
q

; ð33Þ

where

Dhx2i ¼
XNp

i¼1

ðDxiÞ2 ð34Þ

Dhpx
2i ¼

XNp

i¼1

ðDpxiÞ2 ð35Þ

JI QIANG PHYS. REV. ACCEL. BEAMS 26, 024601 (2023)

024601-4



Dhxpxi ¼
XNp

i¼1

DxiDpxi: ð36Þ

The vertical emittance has a similar expression with x
replaced by y.

IV. APPLICATION EXAMPLES

In the following, we will use two application examples to
illustrate the above differentiable self-consistent space-
charge simulation model: one for parameter sensitivity
study and the other one for design optimization study.
In the first illustrative application, we studied the

sensitivity of the final emittances of a 1-GeV coasting
proton beam transporting through a transverse focusing
FODO lattice inside a rectangular perfectly conducting pipe
with respect to the lattice parameters and the initial beam
parameters. A schematic plot of the FODO lattice is shown
in Fig. 1. It consists of a drift (D1) of 0.2 m, a quadrupole
(Q1) of 0.1 m, and a focusing strength of 29.6=m2 for
transverse focusing, another drift (D2) of 0.4 m, another
quadrupole (Q2) of the same length as the first quadrupole
but the opposite sign of focusing, and another drift (D3) of
length 0.2 m. The rectangular pipe has an aperture size of
13 by 13 mm. The zero current phase advance of the FODO
lattice is 87.0°. The current of the proton beam is 200 A
with 1 mm mrad normalized emittance, which results in a
depressed phase advance of 63.1°. The initial distribution is
assumed to be a four-dimensional Gaussian distribution
given by

fðx; px; y; pyÞ ∝ exp

�
−
1

2

�
x2

σ2x
þ 2xpx

μxpx

σxσpx

þ p2
x

σ2px

��

× exp

�
−
1

2

�
y2

σ2y
þ 2ypy

μypy

σyσpy

þ p2
y

σ2py

��

ð37Þ

The parameters in the above distribution are chosen to be
rms matched through the FODO lattice including the space-
charge effects.
We first checked the sensitivity of the final emittances

with respect to seven FODO lattice parameters, i.e., lengths
of the drift and quadrupole elements, and focusing
strengths of two quadrupole elements. In this example,
we used 5000 macroparticles and 12 × 12 spectral modes in

the space-charge simulation. The sensitivity is measured by
the first derivatives of the final emittances (normalized by
initial emittance) with respect to these lattice parameters.
Figure 2 shows the sensitivities of the final horizontal and
vertical emittances with respect to the seven lattice param-
eters from the single differentiable self-consistent space-
charge simulation and from the numerical finite difference
approximation to the first derivative using eight space-
charge simulations. Here, the seven lattice parameters are
drift one length (D1 L), quadrupole one length (Q1 L),
quadrupole one focusing strength (Q1 k), drift two length
(D2 L), quadrupole two length (Q2 L), quadrupole two
strength (Q2 k), drift three length (D3 L). It is seen that the
first derivatives calculated from the differentiable space-
charge model and from the finite difference approximation
agree with each other quite well. This provides a verifica-
tion of the differentiable self-consistent space-charge sim-
ulation model. From this figure, one can see that the final
emittance is much more sensitive to the length of the first
quadrupole than the other lattice parameters such as drift
lengths and quadrupole strengths. The change in the first
quadrupole length causes significant beam envelope varia-
tion and results in a large final emittance change.
Next, we checked the sensitivity of the final proton

beam emittance with respect to the initial beam parameters.
These beam parameters are proton beam energy (Eng.),
beam current (Cur.), and six beam distribution parameters
(σx, σpx

, μxpx
, σy, σpy

, and μypy
). These parameters were

represented using TPSA variables. A number of macro-
particle coordinates (also in TPSA variables) were gener-
ated from the regular sampling method using the beam
distribution parameters. The quadrupole magnetic field
gradient was used instead of the focusing strength since
the latter includes the proton beam energy. The change in
the beam energy affects both the transverse focusing
and the space-charge effects. Figure 3 shows the first
derivatives of the final emittances with respect to the
above eight parameters. It is seen that the final emittances
are more sensitive to the initial distribution parameter σs.

FIG. 1. Schematic plot of a FODO lattice in the first application
example.

FIG. 2. Derivatives of final horizontal and vertical emittances
with respect to seven lattice parameters from the single differ-
entiable self-consistent space-charge simulation and from the
finite difference approximation to the first derivative.
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The perturbation of these parameters affects the matching
of the initial distribution to the FODO lattice and can cause
significant emittance growth with a mismatched
beam [33,34].
The differentiable self-consistent space-charge simula-

tion through the accelerator lattice produces the final beam
properties and their derivatives with respect to the lattice
control parameters at the exit of the accelerator as shown
in the first example. These derivatives can be used in a
gradient-based parameter optimizer for accelerator lattice
control parameter optimization. In the following example,
we integrated the differentiable self-consistent space-
charge simulation model into a conjugate gradient opti-
mizer to attain the quadrupole strengths inside a matching
section in front of a periodic FODO lattice.

A schematic plot of the matching section lattice and the
periodic FODO lattice is shown in Fig. 4. The first four
quadrupoles in the figure were used to match an initial
distribution to the given Twiss parameters at the entrance to
the periodic FODO lattice. The Polak-Ribiere conjugate
gradient optimization method [35] was used to minimize
the objective function that is defined as follows:

fðkÞ ¼ ðβxðkÞ − βxtÞ2
β2xt

þ ðαxðkÞ − αxtÞ2

þ ðβyðkÞ − βytÞ2
β2yt

þ ðαyðkÞ − αytÞ2; ð38Þ

where k is a set of control variables, αxt, βxt, αyt, and βyt are
the target Twiss parameters at the entrance to the periodic
lattice, and the αx, βx, αy, and βy are the beam Twiss
parameters calculated from the self-consistent space-charge
simulation. These calculated beam Twiss parameters
depend on the focusing strengths of the quadrupoles inside
the matching section. These strengths are control variables
in the above objective function. Using the above differ-
entiable space-charge simulation model, the first deriva-
tives of the objective function with respect to the four
control variables were obtained in addition to the objective
function value. These derivatives were used to construct a
conjugate direction of the gradient direction to guide the
search for the minimum solution.
Figure 5 shows the proton beam transverse rms size

evolution through the above FODO lattice without the
quadrupole matching and with the quadrupole matching
including the space-charge effects. Here, the quadrupole
strengths inside the matching section without the matching
were set based on the zero current–matched solution. It is
seen that with a 200-A beam, the space-charge effects are
significant so that the initial zero current–matched quadru-
pole strengths no longer produce a matched rms evolution
inside the periodic lattice. After reoptimizing the four
quadrupole strengths including the space-charge effects

FIG. 3. Derivatives of final horizontal and vertical emittance
with respect to eight beam parameters.

FIG. 4. Schematic plot of a FODO lattice used in the second
application example. The four quadrupoles inside the dashed line
box were used to match the initial distribution to the periodic
FODO lattice.

FIG. 5. Transverse rms size evolution without the quadrupole matching (left) and with the quadrupole matching including the space-
charge effects (right) through the FODO lattice.
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through the self-consistent simulations, the rms evolution
inside the periodic lattice becomes well matched and results
in much less emittance growth (less than 10%) than that from
the mismatched quadrupole setting (greater than 50%).

V. CONCLUSIONS

The self-consistent space-charge simulation is an impor-
tant part in the high intensity, high brightness accelerator
design. In this paper, we proposed a differentiable self-
consistent space-charge model that can be used to effi-
ciently study the sensitivity of the final beam properties
with respect to the accelerator design parameters. Using the
differentiable self-consistent space-charge model, only one
simulation is needed to attain the derivatives of the final
beam properties with respect to all accelerator design
parameters instead of multiple simulations of the conven-
tional space-charge model. The resultant first derivatives
measure the sensitivity of the final beam properties with
respect to those design parameters. Some highly sensitive
machine parameters can be quickly identified after one
differentiable self-consistent space-charge simulation. The
accuracy of the sensitivity measurements computed using
the TPSA method in the differentiable space-charge sim-
ulation depends on the accuracy of the simulation model.
The more accurate the simulation model, the more accurate
these measurements will be.
As an illustration, we presented two application exam-

ples. One example computed the sensitivities of the final
proton beam emittances with respect to seven lattice
parameters or eight beam parameters through a single
differentiable self-consistent simulation. The second exam-
ple showed that the derivatives of the objective function
with respect to the quadrupole strengths inside a matching
section from the differentiable self-consistent space-charge
simulation were used in a conjugate gradient optimizer to
attain the space-charge matched solution to a periodic
FODO lattice. The success of these two examples shows
that the differentiable self-consistent space-charge simu-
lation model can be a useful tool in the accelerator design.
In this study, we used a spectral solver as an illustration of

a differentiable space-charge model. In general, some other
space-charge solvers such as fast multipole solver or Green
function solver can also be used as the differentiable space-
charge model as long as the space-charge fields from these
solvers are represented using TPSA variables. Furthermore,
this can be generalized beyond the space-charge effects. The
other collective effects such as beam-beam effects can also
be represented using TPSA variables. Together with the
particle coordinates and accelerator machine parameters that
are represented using the TPSAvariables, one can develop a
general differentiable simulation tool that includes a variety
of collective effects for accelerator design. Such a tool will
be useful to study the beam quality sensitivity to the
accelerator machine parameters subject to the collective
effects through only one simulation.

In the present study, the computational speed of the
above differentiable space-charge solver is slow compared
with the conventional space-charge solver due to the
overhead associated with the computation using TPSA
variables in the available TPSA library. From the discus-
sion with the author of the TPSA library used in this study,
the computational speed can be substantially improved if
only the first-order derivative is needed [36]. A number of
performance optimization strategies can be employed to
improve the computational efficiency of the library. This
will be pursued in future study by working with the TPSA
library developers.
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