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a b s t r a c t

A three-dimensional (3D) Poisson solver with longitudinal periodic and transverse open boundary
conditions can have important applications in beam physics of particle accelerators. In this paper, we
present a fast efficient method to solve the Poisson equation using a spectral finite-difference method.
This method uses a computational domain that contains the charged particle beam only and has a
computational complexity of O(Nu(logNmode)), where Nu is the total number of unknowns and Nmode is
the maximum number of longitudinal or azimuthal modes. This saves both the computational time and
the memory usage of using an artificial boundary condition in a large extended computational domain.
The new 3D Poisson solver is parallelized using a message passing interface (MPI) on multi-processor
computers and shows a reasonable parallel performance up to hundreds of processor cores.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The particle accelerator as one of the most important inven-
tions of the twenty century has many applications in science and
industry. In accelerators, a train of charged particle (e.g. proton
or electron) beam bunches are transported and accelerated to
high energy for different applications. To study the dynamics of
those charged particles self-consistently inside the accelerator,
the particle-in-cell (PIC) model is usually employed in simulation
codes (e.g. the WARP and the IMPACT code suite [1–3]). This PIC
model includes both the space-charge forces from the Coulomb
interactions among the charged particles within the bunch and
the forces from external accelerating and focusing fields at each
time step. To calculate the space-charge forces, one needs to solve
the Poisson equation for a given charge density distribution. A
key issue in the PIC simulation is to solve the Poisson equation
efficiently, at each time step, subject to appropriate boundary
conditions.

Solving the 3D Poisson equation for the electric potential of
a charged beam bunch with longitudinal periodic and transverse
open boundary conditions can have important applications in
beam dynamics study of particle accelerators. In the accelerator,
a train of charged particle bunches as shown in Fig. 1 are pro-
duced, accelerated, and transported. If the separation between two
bunches is large, each bunch can be treated as an isolated bunch,
and the 3D open boundary conditions can be used to solve the
Poisson equation. In some accelerators such as a Radio-Frequency
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Quadrupole (RFQ), the separation between particle bunches is
short, to model a single bunch, one needs to use the longitudinal
periodic boundary condition [4]. The same model can be used to
study space-charge effects in a longitudinally modulated electron
beam, where the electron beam density varies periodically from
the interaction with the laser beam and the magnetic optic ele-
ments [5].

In previous studies, a number of methods for solving 3D Pois-
son’s equation subject to a variety of boundary conditions have
been studied [6–21]. However, none of these methods handles
the Poisson equationwith the longitudinal periodic and transverse
open boundary conditions. In the code of Ref. [2], an image charge
method is used to add the contributions from longitudinally peri-
odic bunches into the single bunch’s Green function. Then an FFT
method is used to effectively calculate the discrete convolution
between the charge density and the new Green’s function that
includes contributions from other bunches. The computational
cost of this method scales as O(Nlog(N)). However, this method
requires the computation of the Green’s function from multiple
bunch summation. It is not clear, how many bunches are needed
in order to accurately emulate the longitudinal periodic boundary
condition. In Ref. [5], the image chargemethod is usedwith special
function to approximate the summation of the Green’s function
in different regimes. In practical application, one may not know
beforehandwhat regime should be used for a good approximation.
Besides the complexity of the new Green’s function in the image
charge method, to use the FFT to calculate the discrete convolu-
tion, one needs to double the computational domain with zero
padding [8,22]. This increases both the computational time and the
memory usage.
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Fig. 1. A schematic plot of a train of charged particle beam bunches in the particle
accelerator.

In this paper, we propose a fast efficient method to solve the
3D Poisson equation with the longitudinal periodic and transverse
open boundary conditions. We use a Galerkin spectral Fourier
method to approximate the electric potential and the charge den-
sity function in the longitudinal and azimuthal dimensions where
periodic boundary conditions are satisfied. We then use a second
order finite-difference method to solve the radial ordinary dif-
ferential equation for each mode subject to the transverse open
boundary condition. Instead of using a large radial domain with
empty space and artificial finite Dirichlet boundary condition to
approximate the open boundary condition, we use a domain that
contains only the charged particle beam and a boundary matching
condition to close the group of linear algebraic equations for each
mode. This group of tridiagonal linear algebraic equations can be
solved efficiently using the direct Gaussian elimination with a
computational cost O(N), where N is the number of unknowns on
the radial grid.

The organization of this paper is as follows: After the intro-
duction, we describe the proposed spectral finite-difference nu-
merical method in Section 2. Several numerical tests of the new
algorithm and a comparison with the artificial boundary condition
are presented in Section 3. The parallel implementation of the new
3D Poisson solver on multi-processor computer is presented in
Section 4. The conclusions are drawn in Section 5.

2. The spectral finite-difference method

The three dimensional Poisson equation in cylindric coordi-
nates can be written as:
∂2φ

∂r2
+

1
r

∂φ

∂r
+

1
r2

∂2φ

∂θ2 +
∂2φ

∂z2
= −ρ(r, θ, z) (1)

where φ denotes the electric potential, ρ the charge density func-
tion, r and z the radial and longitudinal distance. The longitudinal
periodic and transverse open boundary conditions for the potential
are:

φ(r = ∞, θ, z) = 0 (2)

φ(r, θ + 2π, z) = φ(r, θ, z) (3)

φ(r, θ, z + L) = φ(r, θ, z). (4)

Given the periodic boundary conditions of the electric potential
along the θ and the z, we use a Galerkin spectral method with the
Fourier basis function to approximate the charge density function
ρ and the electric potential φ along these two dimensions as:

ρ(r, θ, z) =

n=Nn/2−1∑
n=−Nn/2

m=Nm/2−1∑
m=−Nm/2

ρm
n (r) exp(−ianz) exp(−imθ ) (5)

φ(r, θ, z) =

n=Nn/2−1∑
n=−Nn/2

m=Nm/2−1∑
m=−Nm/2

φm
n (r) exp(−ianz) exp(−imθ ) (6)

where

ρm
n (r) =

2
Lπ

∫ L

0

∫ 2π

0
ρ(r, θ, z) exp(imθ ) exp(ianz) dθdz (7)

φm
n (r) =

2
Lπ

∫ L

0

∫ 2π

0
φ(r, θ, z) exp(imθ ) exp(ianz) dθdz (8)

and an = n2π/L, L is the longitudinal periodic length. Substituting
the above expansions into the Poisson equation (1) andmaking use
of the orthonormal condition of the Fourier function, we obtain:

∂2φm
n

∂r2
+

1
r

∂φm
n

∂r
−

(
m2

r2
+ (an)2

)
φm
n = −ρm

n . (9)

This is a group of decoupled ordinary differential equations that
can be solved for each individual mode m and n. For these equa-
tions, at r = 0, we have the boundary conditions:
∂φm

n

∂r
(0) = 0; for m = 0 (10)

φm
n (0) = 0; for m ̸= 0. (11)

Assuming all charged particles within the beam bunch are con-
tained within a radius R, we discretize the above equation using a
second order finite-difference scheme, and obtain a group of linear
algebraic equations for each mode (m, n) as:(

r2i
h2 −

ri
2h

)
φm
n (ri−1) −

(
2r2i
h2 + m2

+ a2nr
2
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)
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φm
n (ri+1) = −r2i ρ

m
n (ri) (12)

where i = 1, 2, . . . ,N , and ri = ih. The boundary conditions at
r = 0 are approximated as:

−
3
2
φm
n (r0) + 2φm

n (r1) −
1
2
φm
n (r2) = 0; for m = 0 (13)

φm
n (r0) = 0; for m ̸= 0. (14)

For m = 0, there are only N + 1 linear equations but N + 2
unknowns, and for m ̸= 0, there are only N linear equations but
N +1 unknowns. For the potential outside the radius R, Eq. (9) can
be written as:
∂2φm

n

∂r2
+

1
r

∂φm
n

∂r
−

(
m2

r2
+ (an)2

)
φm
n = 0 (15)

subject to the open boundary conditions

φm
n (r = ∞) = 0. (16)

For n ̸= 0, a formal solution of Eq. (15) subject to the boundary
condition (16) can be written as:

φm
n (r) = A Km(anr), (17)

where Km is the second kind modified Bessel function. Using the
above equation and the continuity of the potential at rN , we obtain
another equation for the unknowns φm

n (rN ) and φm
n (rN+1) as:

φm
n (rN )Km(anrN+1) = φm

n (rN+1)Km(anrN ). (18)

For n = 0,m ̸= 0, Eq. (15) is reduced to the Cauchy–Euler
equation:

∂2φm
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+

1
r

∂φm
0

∂r
−

m2

r2
φm
0 = 0. (19)

A formal solution of this equation that satisfies the open radial
boundary condition can be written as:

φm
0 (r) = Ar−m. (20)

From the above equation, we obtain another equation for the
unknowns φm

0 (rN ) and φm
0 (rN+1) as:

φm
0 (rN )rmN = φm

0 (rN+1)rmN+1. (21)

For n = 0,m = 0, Eq. (15) is reduced to:

∂2φ0
0

∂r2
+

1
r

∂φ0
0

∂r
= 0. (22)
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Fig. 2. Transverse radial electric field profile Er in the middle of the bunch from
the numerical solution together with the analytical solution in a uniform cylinder
coasting beam. Here two solutions overlie each other.

A formal solution of this equation that satisfies the open radial
boundary condition can be written as:

φ0
0 (r) = A log(r). (23)

From this equation, we obtain another equation for the unknowns
φ0
0 (rN ) and φ0

0 (rN+1) as:

φ0
0 (rN ) log(rN+1) = φ0

0 (rN+1) log(rN ). (24)

Using Eqs. (18), (21) and (24), we have N + 2 linear equations
for N + 2 unknowns for m = 0 and N + 1 linear equations for
N + 1 unknowns for m ̸= 0. For each mode m and n, this is a
groupof tridiagonal linear algebraic equations,which canbe solved
effectively using direct Gaussian elimination with the number of
operations scaling as O(N). Since both Fourier expansions in θ

and z can be computed very effectively using the FFT method, the
total computational complexity of the proposed algorithm scales
as O(NNmNnlog(NmNn)).

3. Numerical tests

The numerical algorithm discussed in the preceding section is
tested using two charge density distribution functions. The first
example is an infinite long cylindric coasting beam with uniform
charge distribution within the radius R = 2. The charge density
function is given as

ρ(r, θ, z) =

{
1.0 : r ≤ 2
0.0 : r > 2. (25)

For this charge density function, there is only the radial component
of the electric field. The analytical solution of the electric field can
be found as:

Er (r) =
r
2

for r ≤ 2. (26)

Fig. 2 shows the transverse radial electric field from the numer-
ical solution and the above analytical solution. It is seen that the
numerical solution agrees with the analytical solution very well.
Actually, these two solutions are nearly identical to each other
(except the origin point with 10−15 difference). This is due to the
fact that the solver has second-order accuracy in radial direction
and can approximate the quadratic function exactly, which is true
for this test example with constant source term.

In the second test example, we assume that there is a longitu-
dinal modulation of the charged particle density distribution. The
charge density function is given as:

ρ(r, θ, z) =

{
4 − 4(r/R)2 + sin(a1z)[4 − (a1r)2]/5 : r ≤ R

0.0 : r > R. (27)

The analytical solution of the electric fields for this charge distri-
bution can be written as:

Ez(r, z) = a1 cos(a1z)[r2 − AI0(a1r)]/5 (28)

Er (r, z) = 2r − r3/R2
+ sin(a1z)[2r − Aa1I1(a1r)]/5 (29)

where the constant A is given as:

A =
R2a1K1(a1R) + 2RK0(a1R)

a1I1(a1R)K0(a1R) + a1I0(a1R)K1(a1R)
. (30)

Here, the matching condition at the edge R is used together with
the analytical formal solution Eq. (17) for the open boundary condi-
tion to determine the above constant A. Figs. 3 and 4 show the lon-
gitudinal electric field and the transverse radial electrical field from
the numerical solutions and from the analytical solutions. Here,
the relative errors of the fields are computed from the differences
of the numerical solution and the analytical solution normalized
by the maximum value of the analytical solution. The numerical
solutions and the analytical solutions agree with each other very
well in this longitudinally modulated charged particle beam too.
Here, we have assumed R = 10 and L = πR.

The numerical method proposed in the preceding section has
the advantage that uses a computational domain that contains the
charged particle beam only while satisfying the transverse open
boundary condition. In principle, the transverse open boundary
can be approximated by an artificial closed Dirichlet boundary
condition in a larger computational domain. Since only the electric
fields inside the charge particle beam bunch are needed in the self-
consistent accelerator space-charge beam dynamics simulation,
this larger computational domain by using the artificial Dirichlet
boundary condition will waste both the computational time and
the memory storage in the empty computational domain. In the
following, we use a simplified one-dimensional equation from
above equations to illustrate the advantage of the above proposed
method.

For m = 0 and n = 1, Eq. (9) is reduced to:

∂2φ0
1

∂r2
+

1
r

∂φ0
1

∂r
− a21φ

0
1 = −ρ0

1 . (31)

Assuming a radial charge distribution ρ0
1 (r) as:

ρ0
1 (r) =

{
4 − (a1r)2 : r ≤ R

0.0 : r > R (32)

we can have an analytical solution as:

φ0
1 (r) = −r2 + AI0(a1r) (33)

where the constant A is given in Eq. (30). Fig. 5 shows the electric
potential and the relative errors as a function of radial distance
from the analytical solution, and from the proposed numerical
solution with transverse open boundary condition (R = 10), from
the artificial transverse closed Dirichlet boundary condition using
two times computational domain (φ0

1 (R = 20) = 0), and from
the artificial transverse closed boundary condition using four times
computational domain (φ0

1 (R = 40) = 0). It is seen that even using
two times computational domain, the artificial closed boundary
condition solution still shows much larger errors than the pro-
posed openboundary numerical solution. It appears that four times
larger computational domain is needed in the artificial closed
boundary solution in order to attain the same numerical accuracy
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Fig. 3. Longitudinal electric field profile Ez on the z-axis from the numerical solutions together with the analytical solutions (left) and the relative errors of the Ez (right) in
a longitudinally modulated charged particle beam bunch.

Fig. 4. Transverse radial electric field profile Er in the middle of the bunch from the numerical solutions together with the analytical solutions (left) and the relative errors
of the Er (right) in a longitudinally modulated charged particle beam bunch.

Fig. 5. The electric potential (left) and the relative errors (right) from the analytical solution and from the numerical solution with transverse open, transverse closed with
two times radial computational domain, and transverse closed with four times computational domain.

as the open boundary solution that uses a domain with radius R
that contains the chargedparticle beamonly. In the above example,
wehave used 201 radial grid points for the openboundary solution,

401 grid points for the artificial closed boundary solution with two
times computational domain and 801 grid points for the solution
with four times computational domain.
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Fig. 6. A schematic plot of the two-dimensional domain-decomposition in the r–θ
dimension with a serial z dimension pointing into the paper. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

4. Parallel implementation

The numerical algorithm proposed in Section 2 was imple-
mented onmulti-processor parallel computers. A two-dimensional
domain-decomposition method was employed to implement the
above algorithm. A schematic plot of the two-dimensional domain-
decomposition of the computational domain in the r−θ dimension
with a serial dimension in the z direction is given in Fig. 6. Here,
the dashed lines are computational grids along the radial r and
the azimuthal θ dimensions. The solid lines (red and green) denote
the two-dimensional logical processor layout with two processors
along r dimension and four processors along the θ dimension (total
eight processors). Each processor contains a sector of dashed line
grid points as shown in the figure. The number of grid points on
each processor is kept as equal as possible by uniformly dividing
numerical grid points among the number of processors in each
dimension in order to attain a good load balance.

After mapping the computational domain onto processors, the
solution of the Poisson equation using above algorithmcan be done
on each processor. Since each processor contains all the grid points
along the z dimension, the Fourier expansion along this direction
using the FFT can be done simultaneously on all processors. After
the FFT in z dimension, a parallel transpose is employed to switch
the distributed θ component with the serial z component so that
each processor contains all the grid points along the θ dimension
after the transpose. Then the Fourier expansion along the θ di-
mension can be done simultaneously on all processors using the
FFT. After the Fourier expansion in θ dimension, a second trans-
pose is used to switch the distributed radial component with the
serial θ component so that each processor contains all radial grid
points. The fast Gaussian elimination following above algorithm
is done for each mode (m, n) simultaneously on all processors.
After the solution of radial dependent equation for each mode,
another transpose is used to switch the radial component with the
θ component and followed by an inverse FFT in the θ dimension
on each processor simultaneously. Then another transpose is used
to switch the θ component and the z component, and followed by
an inverse FFT in the z dimension. The parallel transpose used to
switch the distributed component into the serial component in-
volves global communication among all processors using theMPI.

Fig. 7. The speedup of the parallel Poisson solver as a function of the number of
cores on a Cray XC30 supercomputer.

Fig. 8. The total computing time (red), the direct numerical solver time (green),
and the parallel transpose time (blue) as a function of the number of cores on a
Cray XC30 supercomputer. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

The performance of the parallel Poisson solver was tested on a
Cray XC30 supercomputer located at the National Energy Research
Scientific Computing center [23]. This computer is a distributed
share memory parallel computer that has more than five thousand
nodes and each node contains two sockets, each with 12-core Intel
‘‘Ivy Bridge’’ processor. Fig. 7 shows the speedup of the solver on
this computer for a problem size of 256 ×128 ×128, each corre-
sponding to r , θ , and z direction. It is seen that the parallel solver
has good scalability up to hundred processors for this problem
size. Fig. 8 shows the total time, the time used in direct numerical
solution (the FFTs and the Gaussian elimination), and time used in
the parallel transpose as a function of the number of cores for above
test example. The direct numerical solver time goes down almost
linearly with the increase of the number of cores. The parallel
transpose time decreases linearly within a small number of cores
and starts to increase beyond 32 cores due to the global communi-
cation among all processors. This limits the total scalability of the
parallel Poisson solver on large scale supercomputers.

5. Conclusions and discussions

In this paper, we presented a fast three-dimensional parallel
Poisson solver subject to the longitudinal periodic and transverse
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open boundary conditions. Instead of using an enlarged artificial
computational domain with closed Dirichlet boundary condition,
this solver uses a computational domain that contains the charged
particles source term only. This saves both the computational
time and the memory usage compared with the artificial closed
boundary condition method. By using the FFT method to calculate
the longitudinal and azimuthal Fourier expansion and the direct
Gaussian elimination to solve the radial tridiagonal linear alge-
braic equations, the computational complexity of the proposed
numerical method scales as O(Nu(logNmode)). The new 3D Poisson
solver is also parallelized using a message passing interface (MPI)
on multi-processor computers and has a good parallel speedup up
to hundreds of processors. This fast parallel Poisson solver can be
included in the self-consistent PIC codes for space-charge beam
physics study in particle accelerators.

The Poisson solver proposed in this paper uses a cylindrical co-
ordinate system. This coordinate systemworks especiallywell for a
transverse round or nearly round charged particle beam since only
one or a few Fourier modes are needed to represent the azimuthal
density variation. For a beam with large transverse aspect ratio,
it may need a large number of modes to represent the transverse
density distribution. The exact number of Fouriermodes needed to
represent the charge density distribution depends on the physical
applications. For a smooth function, the spectral approximation
has an accuracy whose numerical error scales as exp(−cN)) with
c > 0 and N the number of modes in the approximation [24].
The accuracy of the proposed Poisson solver scales as O(h2

+

exp(−cN)), where h is the radial grid size, and is independent of the
longitudinal-to-transverse aspect ratio. To further improve numer-
ical accuracy of the solver, it will be useful to extend the second-
order finite-difference scheme in radial direction to higher order
scheme, e.g. using a discretization in Ref. [25]. Such an extension
will be reported in our future study.
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