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a b s t r a c t

Three-dimensional (3D) Poisson solver plays an important role in the study of space-charge effects
on charged particle beam dynamics in particle accelerators. In this paper, we propose three new 3D
Poisson solvers for a charged particle beam in an open rectangular conducting pipe. These three solvers
include a spectral integrated Green function (IGF) solver, a 3D spectral solver, and a 3D integrated Green
function solver. These solvers effectively handle the longitudinal open boundary condition using a finite
computational domain that contains the beam itself. This saves the computational cost of using an extra
larger longitudinal domain in order to set up an appropriate finite boundary condition. Using an integrated
Green function also avoids the need to resolve rapid variation of the Green function inside the beam. The
numerical operational cost of the spectral IGF solver and the 3D IGF solver scales as O(N log(N)), where N
is the number of grid points. The cost of the 3D spectral solver scales asO(NnN), whereNn is themaximum
longitudinalmodenumber.We compare these three solvers using several numerical examples anddiscuss
the advantageous regime of each solver in the physical application.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Three-dimensional Poisson’s equation has important applica-
tions in physics, chemistry, biology and environment. In parti-
cle accelerator physics, the nonlinear space-charge effect due to
Coulomb interactions of charged particles has significant impact
to the particle beam quality in high intensity accelerators. It drives
emittance growth of the beam and causes beam losses inside
the accelerator. A natural way to include the space-charge effect
in the simulation is through self-consistent particle-in-cell (PIC)
method [1–6]. In the PICmethod,macroparticles are advanced step
by step in phase space subject to both the external forces and the
space-charge forces. Normally, at each step, the external forces can
be quickly computed using the given external fields. The space-
charge forces are calculated self-consistently using the charge den-
sity distribution at each step by solving the Poisson equation on
a computational grid. Here, the charge density distribution is ob-
tained from the deposition of discrete macroparticles onto the
computational grid using an assumed shape function. Solving the
Poisson equation involves a large number of numerical operations
and is much more computationally expensive than the external
force calculation. An efficient Poisson solver will be of importance
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in the PIC simulation in order to quickly calculate the space-charge
forces and to reduce the total simulation time.

In previous studies, a number of methods have been proposed
to solve the Poisson equation inside a closed computational
domain [7–11]. For fully three-dimensional open computational
domain, an efficient Green’s method using fast Fourier transforms
(FFTs) and zero padding was used to solve the Poisson equation for
the electric potential inside the beam [12–14]. This method was
further improved to handle situation with large aspect ratio and
with high order accuracy [15–17]. In some particle accelerators,
the longitudinal size of the charged particle beam is larger than
the aperture size of the pipe or the aperture size of the beam
pipe is small, the effects of conducting pipe on the beam are not
negligible. Fig. 1 shows a schematic plot of a charged particle
beam inside an open rectangular conducting pipe. The electric
potential in the Poisson equation for the beam has a finite
boundary condition in the transverse plane and an open boundary
condition in the longitudinal direction. A brute force method is
to make the longitudinal computational domain large enough so
that the potential vanishes at the edge computational domain.
The Poisson equation can be solved within a closed computational
domain subject to the 3D Dirichlet boundary condition. However,
using a large extra computational domain beyond the beam may
waste computing resource since only the electric potential/field
inside the beam is needed to advance charged particles in the PIC
simulation. An efficient method to handle the longitudinal open
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Fig. 1. A schematic plot of a charged particle beam inside an open rectangular
conducting pipe.

boundary condition was proposed in our previous study using a
boundary matching procedure [18]. However, this method uses
a finite difference scheme for the longitudinal discretization. For
a long bunch with very large longitudinal to transverse aspect
ratio, (e.g. >100), the use of a finite difference method in the
longitudinal direction may not be computationally efficient. In
Ref. [19], a Hermite-Gaussian expansion was proposed to handle
longitudinal open boundary condition in a round conducting pipe.
For a rectangular conducting pipe, a Green’s function method
was proposed by Ryne to effectively handle the longitudinal open
boundary condition [20]. This method uses a standard Green
function in the transverse plane and an integrated Green function
in the longitudinal direction. The solution is then calculated using
an FFT based method with zero padding. In this paper, we propose
three new alternative methods to solve the Poisson equation in an
open rectangular conducting pipe. These newmethods are spectral
integrated Green function method, 3D spectral method, and 3D
integrated Green function method. To the best of our knowledge,
none of these methods was reported before to solve the 3D
Poisson equation in an open rectangular conducting pipe. All three
methods use a computational domain that longitudinally contains
only the beam itself. No extra computational domain is needed
in the longitudinal direction in order to meet the open boundary
conditions on both sides of the beam. These new solvers effectively
handle the longitudinal open boundary conditions within a finite
computational domain using a spectral method and an integrated
Green function method. The integrated Green function method
also provides an efficient way to solve the Poisson equation inside
a computational domain with a large longitudinal-to-transverse
aspect ratio in comparison to the conventional Green’s function
method.

The organization of this paper is as follows:Wewill present the
three numerical methods in Section 2. We give several numerical
examples in Section 3. Conclusions are drawn in Section 4.

2. Numerical methods

For a chargedparticle beam inside anopen rectangular conduct-
ing pipe, we write the three-dimensional Poisson equation as:

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= −

ρ

ϵ0
(1)

where, φ denotes the electric potential inside the beam, ρ the
charge density distribution of the beam, x, y and z denote the
horizontal, vertical, and longitudinal coordinates respectively. The
boundary conditions for the electric potential in the open rectan-
gular perfect conducting pipe are:

φ(x = 0, y, z) = 0 (2)
φ(x = a, y, z) = 0 (3)
φ(x, y = 0, z) = 0 (4)
φ(x, y = b, z) = 0 (5)

φ(x, y, z = ±∞) = 0 (6)

where a is the horizontal width of the pipe and b is the verti-
cal width of the pipe. In the following, we propose three efficient
numerical methods to solve the Poisson Eq. (1) subject to above
boundary conditions.
2.1. Spectral integrated Green function method

Given the boundary conditions in Eqs. (2)–(6), the electric
potential φ and the source term ρ can be approximated using two
sine functions as [21–24]:

ρ(x, y, z) =

Nl
l=1

Nm
m=1

ρ lm(z) sin(αlx) sin(βmy) (7)

φ(x, y, z) =

Nl
l=1

Nm
m=1

φ lm(z) sin(αlx) sin(βmy) (8)

where

ρ lm(x, y, z) =
4
ab

 a

0

 b

0
ρ(x, y, z) sin(αlx) sin(βmy) dxdy (9)

φ lm(x, y, z) =
4
ab

 a

0

 b

0
φ(x, y, z) sin(αlx) sin(βmy) dxdy (10)

where αl = lπ/a and βm = mπ/b. The above approximation
follows a numerical spectral Galerkin method since each basis
function satisfies the transverse boundary conditions on the wall.
For a smooth analytical function, this spectral approximation has
an accuracy with the numerical error that scales as O(exp(−cN))
with c > 0 and N is the order of the basis function used in
the approximation. Substituting above expansions into the Poisson
equation andmaking use of the orthonormal conditions of the sine
functions, we obtain

∂2φ lm(z)
∂z2

− γ 2
lmφ lm(z) = −

ρ lm

ϵ0
(11)

where γ 2
lm = α2

l +β2
m. The above ordinary differential equation for

each mode lm can be solved using a Green function method. This
solution can be written as:

φ lm(z) =
1

2γlmϵ0


Glm(z − z ′)ρ lm(z ′) dz ′ (12)

where the Green function Glm is given by:

Glm(z − z ′) = exp(−γlm|z − z ′
|). (13)

The above convolution integral can be discretized on a mesh that
longitudinally contains only the beam. The discrete electric poten-
tial on an equidistant grid point zi, i = 1, 2, . . . ,Nz is given as:

φ lm(zi) =
hz

2γlmϵ0

Nz
j=1

Glm(zi − zj)ρ lm(zj) (14)

where hz = (zmax − zmin)/(Nz − 1), zi = zmin + (i − 1)hz , zmin
and zmax are theminimumand themaximum locations of the beam
along the z direction respectively, and Nz is the number of longitu-
dinal grid points. The above summation corresponds to a numerical
trapezoidal rule approximation to the integral and has an accuracy
of O(1/N2

z ). The direct brute-force calculation of above discrete
convolution summation for all Nz grid points takes O(N2

z ) opera-
tions. Fortunately, by using the FFT with the zero padding method,
the computational cost of the summation for all Nz grid points can
be reduced into O(Nz log(Nz)) for each transverse mode lm.

The Green function given in Eq. (13) exponentially decreases
with the increase of the separation between two grid points. In the
numerical calculation of the integral Eq. (12), resolving the Green
function may not be necessary if the variation of beam density
along z is slower than the decreasing rate of the Green function.
The convolution integral Eq. (12) is broken into a summation of a
number of small interval convolutions and can be rewritten as:

φ lm(z) =
1

2γlmϵ0


j

 zj+hz/2

zj−hz/2
Glm(z − z ′)ρ lm(z ′) dz ′ (15)
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where j = 1, 2, . . . ,Nz . If we assume that the charge density ρ lm

stays constant within the interval [zj − hz/2, zj + hz/2], the above
equation can be reduced into:

φ lm(z) =
1

2γlmϵ0


j

Gint
lm (z − zj)ρ lm(zj) (16)

where

Gint
lm (z − zj) =

 zj+hz/2

zj−hz/2
Glm(z − t) dt. (17)

Substituting Eq. (13) into above equation, we obtain the integrated
Green function as:

Gint
lm (zi − zj) =


exp(−γlm|zi − zj|)

γlm
(exp(γlmhz/2)

− exp(−γlmhz/2)), if i ≠ j
2

γlm
(1 − exp(−γlmhz/2)) otherwise.

(18)

Using the integrated Green function Gint
lm , the convolution sum-

mation Eq. (16) can be calculated using the same FFT with the
zero padding method as the standard Green function method. The
numerical error in the above approximation scales as O(h2

z ). The
advantage of this method is that the fast decrease of the Green
function does not need to be resolved in the numerical approxi-
mation to the convolution integral Eq. (12), which can significantly
save computational resource in some applications.

The numerical calculation of the sine function transform in both
x and y directions can be done efficiently using the FFT method.
The computational cost in transverse x and y dimensions scales as
O(NxNyNz(log(NxNy))). Here, we assume that the transverse mode
numbers Nl = Nx and Nm = Ny. Using the zero padding and
the FFT for the discrete convolution summation of each transverse
mode, the cost to compute the convolution along z direction scales
as O(NxNyNz log(Nz)). This results in a total computational cost to
solve the 3D Poisson equation in an open conducting pipe scaling
as O(NxNyNz log(NxNyNz)).

2.2. 3D spectral method

In many accelerator physics application, the longitudinal den-
sity distribution of the charged particle beam has a Gaussian dis-
tribution. This suggests that the ordinary differential equation (11)
can also be solved efficiently using a Hermite-Gaussian series ex-
pansion, which naturally satisfies the open boundary condition
(Eq. (6)) in the longitudinal z direction.

The charge density ρ and the electric potential φ for each
transverse mode lm can be approximated as [21,22,24]:

ρ lm(z) =

Nn
n=0

ρ lm
n Hn(z) (19)

φ lm(z) =

Nn
n=0

φ lm
n Hn(z) (20)

where the scaled Hermite-Gaussian function Hn is defined as:

Hn(z) = Hn

 z
A


exp


−

1
2
z2

A2


(21)

where A is a longitudinal scaling constant, which can be set as the
beam longitudinal root mean square (RMS) size σz , Hn is the nth
order Hermite polynomial with properties: H0(z) = 1, H1(z) =
2z, . . . ,Hn(z) = 2zHn−1 − 2(n − 1)Hn−2. The scaled Hermite-
Gaussian function H has the properties:

∞

−∞

Hn(z)Hm(z)dz = 2nn!
√

πAδnm (22)

and

∂2Hn

∂z2
=

1
4A2

Hn+2 +
n(n − 1)

A2
Hn−2 −

2n + 1
2A2

Hn (23)

where δmn = 1 for m = n and δmn = 0 for m ≠ n. The expansion
coefficients ρn and φn can be obtained from

ρ lm
n =

1
2nn!

√
πA


∞

−∞

ρ lm(z)Hn(z)dz (24)

φ lm
n =

1
2nn!

√
πA


∞

−∞

φ lm(z)Hn(z)dz. (25)

The above approximation also follows the spectral Galerkin
method since the Hermite-Gaussian basis function satisfies the
longitudinal open boundary condition naturally. For a smooth
function, this results in the error in above approximation going
to zero exponentially with respect to the number of the basis
function. Substituting the functions ρ and φ into Eq. (11), and
using the orthogonality of the scaled Hermite-Gaussian functions
Eq. (22), the Poisson equation is reduced into a group of linear
algebraic equations:

1
4
φ lm
n−2 −


1
2
(2n + 1) + γ 2

lmA
2


φ lm
n + (n + 2)(n + 1)φ lm

n+2

= −A2ρ lm
n /ϵ0 (26)

where n = 1, 2, . . . ,Nn andNn is the number of Hermite-Gaussian
modes, and φ lm

−1 = φ lm
0 = φ lm

Nn+1 = φ lm
Nn+2 = 0. This group

of algebraic equations is a band-limited matrix equation, which
can be solved effectively using direct Gaussian elimination with
a numerical operation cost of O(Nn) for each transverse mode
lm. This results in a total cost to solve above equations scaling
as O(NlNmNn) for all modes. The computational cost of the sine
transform scales as O(NxNyNz log(NxNy)). The computing of the
Hermite-Gaussian expansion coefficients is more expensive and
scales as O(NlNmNnNz). If the number of the Hermite-Gaussian
modes can be controlled within a reasonable limit by taking
advantage of the high order accuracy of the spectral method,
this method can still be very efficient. Another advantage of
this method is that it provides a natural smoothing of electric
potential in the self-consistent PIC simulation by removing the
high frequency modes in the expansion.

2.3. 3D integrated Green function method

Another method to solve the 3D Poisson equation inside the
open rectangular pipe is to use an integrated Green function
method directly. In Ref. [20], a transverse standard Green function
and a longitudinal integrated Green function method was used to
solve the Poisson equation in the open conducting pipe. In this
paper, we extend that method into a fully 3D integrated Green
function method. Using a 3D integrated Green function saves the
computational cost in order to resolve the Green function variation
on numerical grids. This method has also the advantage of using a
computational domain that contains only the beam itself instead
of the whole transverse pipe cross-section.

In Section 2.1, we expand the solution of electric potential and
the charge density transversely using two sine functions andobtain
the longitudinal z dependent solution using a Green’s function
method. By substituting Eqs. (9) and (13) into Eq. (12), then
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Eq. (12) into Eq. (8), we obtain the solution of the 3D Poisson
equation inside an open rectangular pipe as:

φ(x, y, z) =
2

abϵ0

∞
l=1

∞
m=1

1
γlm

sin(αlx) sin(βmy)

×

 xmax

xmin

 ymax

ymin

 zmax

zmin

sin(αlx′) sin(βmy′)

× exp(−γlm|z − z ′
|)ρ(x′, y′, z ′) dx′dy′dz ′. (27)

A direct brute-force calculation of the electric potential following
above equation on all NxNyNz grid points takes O((NxNyNz)

2)
operations. Meanwhile, this equation can be rewritten as:

φ(x, y, z) =
1

2abϵ0

 xmax

xmin

 ymax

ymin

 zmax

zmin

∞
l=1

∞
m=1

1
γlm

× [cos(αl(x − x′)) − cos(αl(x + x′))]

× (cos(βm(y − y′)) − cos(βm(y + y′)))

× exp(−γlm|z − z ′
|)ρ(x′, y′, z ′) dx′dy′dz ′. (28)

Following the same idea of the preceding subsection,we can define
a three-dimensional integrated Green function as:

Gint
3D(x, x

′, y, y′, z, z ′) =
1

2abϵ0
(R(x − x′, y − y′, z − z ′)

− R(x − x′, y + y′, z − z ′) − R(x + x′, y − y′, z − z ′)

+ R(x + x′, y + y′, z − z ′)) (29)

where

R(u, v, w)

=

∞
l=1

∞
m=1

1
αlβmγlm

[sin(αl(u − hx/2)) − sin(αl(u + hx/2))]

× (sin(βm(v − hy/2)) − sin(βm(v + hy/2))) Gint
lm (w) (30)

where hx = (xmax−xmin)/(Nx−1) and hy = (ymax−ymin)/(Ny−1).
Using the extended trapezoidal quadrature rule in 3D, the electric
potential on a grid (i, j, k) can be approximated as:

φ(xi, yj, zk) =

Nx
i=1

Ny
j=1

Nz
k=1

Gint
3D(xi, yj, zk, x

′

i, y
′

j, z
′

k) ρ(x′

i, y
′

j, z
′

k). (31)

The numerical error in above approximation scales as O(1/N2
x +

1/N2
y + 1/N2

z ). The above summation can also be calculated
efficiently on a doubled computational domain using an FFT
method with zero padding method. In order to compute this
summation using the FFT-based method, besides the direct
convolution term R(x − x′, y − y′, z − z ′)ρ(x′, y′, z ′), there
are also terms that contain auto-correlations in R(x − x′, y +

y′, z − z ′), R(x + x′, y − y′, z − z ′), and R(x + x′, y +

y′, z − z ′). It turns out that those auto-correlations can be
handled in a similar way to the convolution term except that
the backward/forward FFT is used in the dimension with auto-
correlation while the forward/backward FFT is used in the
dimension with convolution [20]. The total operational cost for
the summation in Eq. (31) scales as O(NxNyNz log(NxNyNz)) for all
NxNyNz grid points.

3. Numerical examples

In the following, we present several numerical examples for
the above proposed algorithms. Here, we assume that the charged
particle beam has a 3D Gaussian density distribution as:

ρ(x, y, z) = exp


−

(x − x0)2

2σ 2
x

−
(y − y0)2

2σ 2
y

−
(z − z0)2

2σ 2
z


(32)
where σx, σy, and σz denote RMS sizes of the beam, and x0, y0, and
z0 denote the centroid of the beam.

In the first example, we study the effects of longitudinal-to-
transverse aspect ratio on the accuracy of the numerical solution.
We assume that the pipe transverse aperture sizes a = b = 2,
transverse RMS beam sizes σx = σy = 1/6, and the longitudinal
RMS size σz = 1/6 that results in an aspect ratio of A = 1, and the
σz = 16.67 for an aspect ratio of A = 100. The computational grid
used in this example is 65×65×64, and themaximum transverse
and longitudinal modes Nl = Nm = Nn = 64. Fig. 2 shows the
electric potential solution on-axis (red lines) and off-axis (green
lines) as a function of the longitudinal distance using the spectral
standard Green functionmethod and the spectral integrated Green
functionmethod. It is seen that for small aspect ratio beam (A = 1),
the two methods agree with each other very well. However, for
large aspect ratio beam (A = 100), the integrated Green function
solutions are very different from those obtained from the standard
Green function solutions. The standard Green function method
significantly over-predicts the on-axis and the off-axis electric
potentials. This is because the standard Green function method in
the longitudinal direction fails to resolve the fast variation of the
Green function in Eq. (13) as the bunch length increases in the large
aspect ratio case and the longitudinalmesh size (hz) increaseswith
fixed longitudinal grid points.

In the second numerical example, we would like to compare
the solutions from the above three numerical methods with the
analytical solutions using the same numerical parameters as the
preceding example with the aspect ratio A = 100. The analytical
solutions were obtained directly from Green’s function solution
Eq. (27) based on a high precision calculation of the integrals and
summations using 2001 × 2001 × 20001 grid points and 32 × 32
transverse modes. Fig. 3 shows the electric potential solutions and
the relative errors along the center horizontal axis from the above
three numerical methods (the spectral integrated Green function
(green line), the 3D spectral method (blue line), the 3D integrated
Green function method (pink line)) and the analytical solution
(red line). All three numerical methods produce solutions with
relative errors below 0.1%. The 3D spectralmethod solution has the
least relative errors as expected. The 3D integrated Green function
method has the largest relative errors but is still below 0.1%. Fig. 4
shows the electric potential solutions and the relative errors along
center longitudinal axis in this example using the three numerical
methods together with the analytical solution. Again, all three
methods give a good approximation to the analytical solution with
the maximum relative error below 0.1%. The 3D spectral method
shows the least relative error among the three methods.

The 3D integrated Green function method has larger relative
errors than the other two methods. It is also more computational
expensive than the other two methods since the calculation of the
integrated Green function itself involves double summations with
respect to the number of transverse modes. However, it has the
advantage that the convolution integral contains the beam itself
in a 3D computational domain. For example, in the application
with a small, long beam inside a rectangular conducting pipe as
shown in Fig. 5, the computational domain for the 3D integrated
Green function method needs only to contain the beam instead
of the entire transverse cross section of the conducting pipe.
This helps to improve the numerical resolution and accuracy of
the solution. In the following numerical example, we assume a
Gaussian distribution beam with σx = σy = 1/48 and σz =

66.67, and pipe aperture a = b = 2. This beam has a very large
aspect ratio of 3200. Such a large aspect ratio beam can be found
in some storage ring accelerators. The computational grid used
in this example is 65 × 65 × 64, and the maximum transverse
and longitudinal mode number Nl = Nm = Nn = 64. Fig. 6
shows the electric potential distribution solutions and relative
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Fig. 2. The on-axis potential solution φ(a/2, b/2, z) and off-axis φ(a/4, b/4, z) potential solution as function of z from the spectral standard Green functionmethod (green)
and from the spectral IGF method (red) for a beam with an aspect ratio 1 (left) and an aspect ratio 100 (right). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Fig. 3. The electric potential solutions (left) and relative errors (right) along the horizontal axis from the three proposed numerical algorithms using a 65 × 65 × 64
computational grid and from the analytical solution. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Fig. 4. The electric potential solutions (left) and relative errors (right) along the longitudinal axis from the three proposed numerical algorithms using a 65 × 65 × 64
computational grid and from the analytical solution.
errors on center axis along the longitudinal z direction from the
analytical solution and from the three numerical methods. It is
seen that the 3D integrated Green function method has the least
error among the three solutions. This is because that this method
uses a computational domain that contains the beam itself, while
the other two methods use a computational grid that covers the
entire transverse cross-section of the pipe, hence, less numerical
resolution of the beam itself. The two solutions from the spectral-
integrated Green function method and the 3D spectral method
show similar larger errors than that from the 3D integrated Green
function method. This is due to the fact that the poor transverse
resolution in both methods results in these large errors.
Fig. 5. A schematic plot of a long small transverse size beam inside a rectangular
conducting pipe together with the computational domain for the 3D integrated
Green function method.

4. Conclusions

In this paper, we proposed three new 3D Poisson solvers to
calculate the electric potential in the charged particle beam inside
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Fig. 6. The electric potential solutions (left) and relative errors (right) along the longitudinal axis from the three proposed numerical algorithms and from the analytical
solution for a long small transverse size beam.
an open conducting rectangular pipe. Those three Poisson solvers
effectively save the computing resource by using a computational
domain that longitudinally contains the beam itself. Using an
integrated Green function in two solvers also avoids the need to
resolve rapid variation of the Green function inside the beam and
saves the computational cost of using a large number of grid points
in the solution. The spectral integrated Green function solver and
the 3D integrated Green function solver have a computational
complexity of O(N log(N)), where N is the total number of
grid points. The computational cost of the 3D spectral solver
scales as O(NnN), where Nn is the number of Hermite-Gaussian
modes used in the solution. Given the fast convergence rate of
the spectral solver, the mode number might be kept small. In
scaling estimation, the spectral integrated Green function Poisson
solver and the 3D integrated Green function Poisson solver are
more efficient than the 3D spectral Poisson solver. In practical
application, the 3D integrated Green function Poisson solver is
most time consuming due to the double summations in the Green
function. However, it has the advantage that the computational
domain only needs to contain the beam itself in both transverse
and longitudinal directions. This saves computational cost when
the transverse size of the beam ismuch smaller than the transverse
aperture of the pipe. The 3D spectral solver has an extra cost factor
depending on the Hermite-Gaussian mode number. However, this
solver normally has less numerical errors and can also provide
smooth electric potential solution even if the charge density
function contains numerical noise from the discrete macroparticle
deposition in the PIC simulation. The spectral integrated Green
function solver has a numerical accuracy between the 3D spectral
solver and the 3D integrated Green function solver, but a favorable
computational cost scaling.
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