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Abstract

In this paper, we present a three-dimensional model for self consistently modeling ion beam formation from plasma ion sources and transporting
in low energy beam transport systems. A multi-section overlapped computational domain has been used to break the original transport system
into a number of weakly coupled subsystems. Within each subsystem, macro-particle tracking is used to obtain the charge density distribution in
this subdomain. The three-dimensional Poisson equation is solved within the subdomain after each particle tracking to obtain the self-consistent
space-charge forces and the particle tracking is repeated until the solution converges. Two new Poisson solvers based on a combination of the
spectral method and the finite difference multigrid method have been developed to solve the Poisson equation in cylindrical coordinates for the
straight beam transport section and in Frenet–Serret coordinates for the bending magnet section. This model can have important application in
design and optimization of the low energy beam line optics of the proposed Rare Isotope Accelerator (RIA) front end.
© 2006 Elsevier B.V. All rights reserved.

PACS: 29.27.Bd; 29.27.Ac; 29.27.Eg
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1. Introduction

The RIA linac driver requires a great variety of high charge
state, high intensity ion beams from the Electron Cyclotron
Resonance (ECR) ion sources. This presents a strong chal-
lenge not only for the design of the ECR ion sources but also
for the design of low energy beam transport (LEBT) systems.
Computational tools help to explore a wide range of parameter
space, to identify the particle loss conditions, and to optimize
the system design and operation. A number of simulation tools
have been developed in the past years to study the ion beam
formation from ECR ion sources [1–4]. However, these tools
used the successive over-relaxation (SOR) method, to calculate
the space-charge forces (by solving the Poisson equation) dur-
ing the ion beam formation. The convergence rate of the SOR
method decreases dramatically as the mesh size gets finer and
the number of grid points gets larger. Meanwhile, these tools do
not effectively handle the space-charge effects inside a bend-
ing magnet. So far, they have not been used to self-consistently
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simulate a three-dimensional ion beam transport inside a LEBT
system. Previous designs of LEBT systems depended on a two-
dimensional envelope model such as TRACE-2D [5–7], a time
dependent bunched beam simulation with periodic boundary
condition [8], or a simplified model with infinite beam pipe
length [9]. A fully three-dimensional self-consistent simulation
of multiple charge state ion beam transport in the LEBT system
will help to optimize the design of the transport system and to
minimize the particle losses in such a system.

2. Physical model and computational methods

The physical system in this model is a low energy ion beam
transport system. A plot of a LEBT system together with the
plasma ion source at the Lawrence Berkeley National Labo-
ratory is given in Fig. 1 [10]. It consists of a high voltage
extraction system for ion beam formation from the plasma ion
source, a solenoid magnetic lens for transverse focusing and a
double-focusing analyzing bend magnet for charge selection.
Low energy ion beam transport inside the LEBT system is dif-
ferent from the beam transport inside a radio-frequency (RF)
linac. Inside the RF linac the beam is longitudinally bunched
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Fig. 1. A schematic plot of the low energy beam transport system together with the plasma ion source at Lawrence Berkeley National Laboratory.
Fig. 2. A schematic plot of the overlapped multiple computational subdomains.

to a few millimeters by the time dependent RF fields. Inside
the LEBT system, there is no longitudinal bunching, the par-
ticles extend longitudinally through the whole system to form
a continuous steady state beam. The length of beam could be
from a few metres to ten metres. To model the particle trans-
port in such a system, we need to solve the time-independent
Vlasov–Poisson equations including correct transverse bound-
ary conditions. A brute force approach is to model the whole
system as one computational domain directly. However, this
is computationally impractical if a good numerical precision
is required. For example, a very high numerical resolution is
needed in order to accurately model the plasma surface at the
exit of the ion source. This high accuracy may not be needed
through the whole system. Furthermore, the particles at the
beginning may not affect the particles near the end due to
the large longitudinal-to-transverse aspect ratio and the shield-
ing of transverse conducting wall. Hence, we can divided the
whole beam into multiple overlapped segments. Fig. 2 shows a
schematic plot of the overlapped multiple computational sub-
domains. Here, each subdomain overlaps with the neighboring
subdomains. For each segment, we solve the time-independent
Fig. 3. A flow diagram of the iterative ray tracing procedure.

Vlasov–Poisson equations with the Dirichlet boundary condi-
tions on the left end and the Neumann boundary conditions on
the right end. The left end of the segment is chosen inside the
domain of the preceding segment so that the potential and the
density distribution obtained in the preceding segment are used
as the left boundary conditions of this segment. Within each
segment, an iterative particle-tracking method has been used to
obtain the converged solution of the time-independent Vlasov–
Poisson equations. The flow diagram of the iteration procedure
is given in Fig. 3. The particles are advanced through the space
by solving the Lorentz equations of motion for each particle
subject to the external fields and the space-charge forces. These
particles are deposited onto the computational grid to obtain the
charge density distribution on the mesh. After all of the particles
have passed through the local subdomain, the Poisson equation
is solved to obtain the space-charge potential generated by the
ion beam itself. The particle tracking is redone using the calcu-
lated new space-charge fields and the applied external fields of
the beam transport system. This procedure is repeated until the
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change of the space-charge potential between two iterations is
below specified error tolerance level and the particle trajectories
have converged.

In the process of particle tracking, the Lorentz equations of
motion are solved in the Frenet–Serret coordinate system since
it is a convenient coordinate system for specifying particle mo-
tion inside both the bending magnet and the straight section
shown in Fig. 1. In this coordinate system, the equations of mo-
tion are written as [11,12]:

(1)
dpx

dt
= vz

h

1 + hx
pz + Fx,

(2)
dpy

dt
= Fy,

(3)
dpz

dt
= −vz

h

1 + hx
px + Fz,

(4)
dx

dt
= px

mγ
,

(5)
dy

dt
= py

mγ
,

(6)
dz

dt
= pz

mγ (1 + hx)
,

where x corresponds to the horizontal direction, y corresponds
to the vertical direction, z corresponds to the longitudinal direc-
tion, px,y,z is the x, y, and z component of mechanic momen-
tum, Fx,y,z is the corresponding force of each component, γ is
the relativistic factor γ = 1.0/

√
1 − (ṙ/c)2, c is the speed of

light in the vacuum, and h is the curvature of the bending mag-
net with a bend plane in x − z (i.e. horizontal) plane. Inside the
straight section, curvature h = 0, the Frenet–Serret coordinates
reduce into the standard Cartesian coordinates. The above non-
linear equations of motion are solved using a modified leap-frog
algorithm. The charge density on the grid is obtained from the
summation of linear volume weighted deposition scheme in the
cylindric coordinate system inside the straight sections and in
the Frenet–Serret coordinate system inside the bending magnet
section.

2.1. Solution of the 3D Poisson equation in cylindrical
coordinates

A major part of the LEBT system, such as extraction region
and solenoid focusing region, has a cylindrical geometry with
azimuthal symmetry. For such a system, we can write the Pois-
son equation in cylindric coordinates as:

(7)
∂2φ

∂r2
+ 1

r

∂φ

∂r
+ 1

r2

∂2φ

∂θ2
+ ∂2φ

∂z2
= −ρ/ε0.

Here, φ denotes the electrostatic potential generated by the
beam itself, ρ the charge density function, r and z the radial
and longitudinal distance. Since both the electric potential and
the charge density are periodic function of θ , we can approxi-
mate the potential φ and source term ρ as:

(8)ρ(r, θ, z) =
Nm/2−1∑

ρm(r, z) exp(−imθ),
m=−Nm/2
Fig. 4. A schematic plot of an irregular discretization point inside the computa-
tional domain.

(9)φ(r, θ, z) =
Nm/2−1∑

m=−Nm/2

φm(r, z) exp(−imθ).

Substituting Eqs. (8) and (9) into the Poisson equation (7), we
obtain a group of decoupled two-dimensional partial differen-
tial equations in (r, z) as:

(10)
∂2φm

∂r2
+ 1

r

∂φm

∂r
− m2

r2
φm + ∂2φm

∂z2
= −ρm/ε0.

The boundary conditions at the radial edge are assumed as the
Dirichlet boundary conditions with given potentials on the con-
ducting wall or as the Neumann boundary conditions if there is
no conducting wall. On the axis, the boundary conditions are

(11)
∂φm(0, θ, z)

∂r
= 0 for m = 0,

(12)φm(0, θ, z) = 0 for m > 0.

The boundary conditions at the left edge of the computational
domain are assumed as the Dirichlet boundary conditions ob-
tained from the preceding subdomain and as the Neumann
boundary conditions at the right edge of the computational do-
main.

The above two-dimensional partial differential equations are
solved using a finite difference multigrid method for each az-
imuthal mode m. The computational domain for the extraction
region of the LEBT system contains electrodes with irregular
shapes. For the grid points near the conducting surface, the
mesh size could be different in r and z directions. An irregu-
lar discretization along r and z is needed. A schematic plot of
an irregular discretization point is given in Fig. 4. For such a
discretization scheme, the differential operator in Eq. (10) can
be approximated as:

(13)

∂φm
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≈ 1
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φm
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Fig. 5. Three-level discretization of a 2D computational domain.

(15)
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≈ 2
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(
1

h1

(
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i,j

) + 1
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(
φm
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,

where h1 and h3 denote the uneven mesh size in the z direction,
h2 and h4 denote the uneven mesh size in the r direction. Sub-
stituting these approximations into Eq. (10), we obtain a five
point difference equation at grid point (i, j) as:( 2r2

i,j

h2h4
+ 2r2

i,j

h1h3
+ m2 − ri,j (h2 − h4)

h2h4

)
φm

i,j
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ε0
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( 2r2
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+ ri,j h4

h2(h2 + h4)

)
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( 2r2

i,j
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(16)+ 2r2
i,j

h1(h1 + h3)
φi,j+1 + 2r2

i,j

h3(h1 + h3)
φi,j−1.

This equation reduces to the standard second-order five point
difference equation for the grid points away from the conduct-
ing surface where h1 = h3 = hz and h2 = h4 = hr .

The linear algebraic equation (16) for each grid point in-
side the computational domain is solved using an iterative
multigrid method [13–15]. The multigrid method is an itera-
tive method based on the concept of smoothing out numerical
iteration errors on multiple resolution scales. Instead of solv-
ing the original discrete Poisson equation on one fixed mesh
size, the multigrid method solves the discrete Poisson problem
on multiple levels of mesh size. Fig. 5 shows an example of
three level discretization of a 2D computational domain. As
the discretization level increases, the mesh size increases and
the number of unknowns inside the computational domain de-
creases exponentially. At level three, only one unknown is left
for the Dirichlet boundary conditions, which can be solved di-
rectly.

The discrete Poisson equation at one level of mesh size can
be written in a general form of linear algebraic equation:

(17)A(i)X(i) = B(i),

where A(i) is the discrete Poisson operator at level i, X(i) de-
notes the unknown solution vector at the finest level or the
unknown correction vector at other levels, and B(i) is the source
vector at the finest level or the residual vector at other levels.
The multigrid algorithm using two grid levels consists of five
basic operations: pre-smoothing, restriction, evaluation, prolon-
gation, and post-smoothing. During the pre-smoothing stage, an
approximate solution of X(i), X̃(i), is obtained using a classical
iterative method such as the Gauss–Seidel iteration:

(18)X̃(i) = (
D(i) + L(i)

)−1
U(i)X̃(i) + (

D(i) + L(i)
)−1

B(i),

where D(i), L(i) and U(i) correspond to the main diagonal part,
below diagonal part and above diagonal part of the matrix A(i).
The residual vector r(i) at this level is calculated from the ap-
proximate solution as

(19)r(i) = B(i) − A(i)X̃(i).

These residuals are interpolated from the fine grid i to the
coarse grid i + 1 using a restriction operator R to obtain the
right-hand side of Eq. (17):

(20)B(i+1) =Rr(i).

Here, a linear restriction operator R on a 2D grid is defined as:

(21)R =
⎛⎜⎝
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which corresponds to a bilinear nine-point interpolation scheme.
The evaluation operation on coarse grid i + 1 will solve the
discrete Poisson equation for the correction vector through a
direct or an iterative method. The obtained correction is re-
interpolated back to the fine grid i from the coarse grid i + 1
using a prolongation operator. The improved solution on grid
level i is given by

(22)X̃(i)
new = X̃(i) +PX̃(i+1),

where P is the prolongation operator:

(23)P =
⎛⎜⎝
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2 1 1

2
1
4

1
2

1
4

⎞⎟⎠
which also corresponds to a bilinear interpolation scheme giv-
ing nonzero values at nine grid points. This new approximate
solution is then used in the classical iterative method as a post-
smoothing stage to further improve the accuracy of the solution.
If the discrete equation on the coarse grid i + 1 can be solved
using an evaluation operation, only two grid levels are used, and
the algorithm is referred to as two-grid method. If the solution
on the coarse grid i +1 cannot be easily attained, the evaluation
step can be replaced by more two-grid iterations. Depending
on how many two-grid iterations are used when each time the
number of grid levels is increased by one, the multigrid iter-
ation can have a V cycle (one two-grid iteration is used) or a
W cycle (two two-grid iterations are used) structure [15]. Fig. 6
gives a schematic plot of a V cycle and a W cycle structure with
four grid levels. Here, S denotes a smoothing operation, E de-
notes an evaluation operation, each descending line \ denotes a
restriction operation, and each ascending line / denotes a pro-
longation operation.

In the multigrid method, the iteration can start from finest
grid level or start from the coarsest grid level. If a good ini-
tial guess of the solution is available, starting from the finest
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Fig. 6. A schematic plot of a V cycle and a W cycle iteration structure in the
multigrid algorithm using four grid levels [15].

grid will be an appropriate method. Otherwise, starting from
the coarsest grid will be more efficient since the solution on the
coarsest grid can be obtained from the direct evaluation and in-
terpolated to the next finer grid level. The interpolated solution
on the finer grid level is used to start the smoothing operation
at that level. After some V or W cycle of iterations, the solution
at that level is further interpolated to next even finer grid level
to start a new smoothing operation and iteration cycle. Such a
process is repeated for a number of times until the finest grid
level is reached. This type of multigrid iteration is called full
multigrid method or nested iteration.

The multigrid method uses more grid levels than the con-
ventional single grid iteration methods. This seems to be more
computationally expensive than the single grid iteration. How-
ever, by changing the resolution of the discretization, i.e. scale
of resolution, from one level to the next level, the low fre-
quency errors in the numerical residues of the iteration can be
removed by a coarse grid iteration, while the high frequency
errors can be resolved on a fine grid iteration. Therefore, the
multigrid method uses much less number of iterations on the
finest grid level to obtain the converged solution than the sin-
gle grid iteration method. Most computational work is done on
coarse grids with much less number of operations on each grid
level compared with the finest grid level iteration. It has been
shown that the computational cost of this method scales lin-
early with the number of grid points [14]. Hence, the multigrid
iteration provides a much faster convergence than the conven-
tional iterative method such as SOR method. As a comparison,
we have solved a 2D Laplace equation with Dirichlet bound-
ary conditions using the multigrid method and the classic SOR
(ω = 1.96) method. Fig. 7 shows the computing time as a func-
tion of number of grid points using both methods. It is seen that
the multigrid method scales linearly with the number of grid
points while the SOR scales exponentially with the number of
grid points. The computing time on the same number of grid
points using the SOR is much higher than that using the multi-
grid method.

In this work, we have extended a 2D multigrid solver devel-
oped by Fortuna to include the Neumann boundary condition
and the irregular geometry shape of the electrode in the extrac-
tion region [16]. We have used a point red and black Gaussian–
Seidel iteration method as pre and post smoother on each level.
For the first iteration during each particle tracking, we have
Fig. 7. Computing time as a function of grid point number for solving a 2D
Laplace equation with Dirichlet boundary conditions using the SOR and the
multigrid method.

Fig. 8. Radial electric field from the numerical solution and from the analytical
solution.

used the nested multigrid algorithm with a W cycle to solve the
discrete Poisson equation (Eq. (16)) for each azimuthal mode
since the initial guess of the solution on the finest grid level is
not easily obtained. For the following iteration, we have started
the iteration from the finest grid with the initial guess from the
previous iteration. We have also used a bilinear interpolation for
prolongation and restriction during the multigrid iteration. This
solver is first tested with a simple uniform round beam inside
a conducting pipe since the analytical solution can be obtained
for this case. Here, we have used a Neumann boundary con-
ditions at both ends. The numerical solution together with the
analytical solution is shown in Fig. 8. The agreement between
the numerical and the analytical solution is very good. As a sec-
ond test, we calculated the potential inside the extraction region
with a 20 kV plasma electrode, a −1 kV puller electrode, and
a 0 kV ground electrode. The electric potential on the axis as a
function of distance is shown in Fig. 9 together with a solution
using the code WARP [17]. The agreement between the solu-
tions obtained by the two different codes, which use different
Poisson solvers, is quite good. The maximum relative differ-
ence is about 1%.
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Fig. 9. Electric potential on the axis (top) and relative potential difference (bot-
tom) from the new solver and from the WARP solver.

2.2. Solution of the 3D Poisson equation in Frenet–Serret
coordinates

The preceding Poisson solver is applicable for a round sys-
tem with azimuthally symmetric geometry. For some element in
the LEBT system, such as the bending magnet, it has a rectan-
gular cross-section with a horizontal bending angle. The bend-
ing magnet provides not only a transverse focusing of the ion
beam but also a selection of different charge states for further
transport. Inside this element, we use the Frenet–Serret coor-
dinates since these coordinates reduce to the normal Cartesian
coordinates when the curvature is zero. The 3D Poisson equa-
tion in this coordinate system can be written as:

1

1 + hx

(
∂

∂x
(1 + hx)

∂φ

∂x

)
+ ∂2φ

∂y2

(24)+ 1

1 + hx

(
∂

∂z

(
1

1 + hx

∂φ

∂z

))
= −ρ(x, y, z)

ε0
,

where h is the curvature of the bending magnet, x corresponds
to the horizontal direction, y corresponds to vertical direction
and z corresponds to longitudinal direction. For perfect con-
ducting plates, the electric potential will vanish on vertical
walls. We can approximate the electric potential and the charge
density distribution as:

(25)ρ(x, y, z) =
Nm∑

ρm(x, z) sin(mπy/a),
m=1
Fig. 10. Horizontal electric field along the vertical axis with a bended rectangu-
lar pipe with different curvatures.

(26)φ(x, y, z) =
Nm∑
m=1

φm(x, z) sin(mπy/a),

where a is the full vertical aperture width. Substituting these
equations into the Poisson equation (24) and using the orthogo-
nal condition of sine functions, we obtain a group of decoupled
two-dimensional partial differential equations:

1

1 + hx

(
∂

∂x
(1 + hx)

∂φm

∂x
+ ∂

∂z

1

1 + hx

∂φm

∂z

)
− m2π2

a2
φm

(27)= −ρm(x, z)

ε0
.

The resulting two-dimensional partial differential equations are
solved using the same finite difference multigrid method de-
scribed before.

As a test of this Poisson solver, we calculated the electric
fields inside a bended conducting pipe with a longitudinal uni-
form and transverse Gaussian distribution beam and different
bending curvatures. Fig. 10 shows the horizontal electric field
as a function of y at x = 0 for different bending curvatures. We
see that as the curvature approaches to zero, the horizontal field
vanishes due to the symmetry of the beam density distribution.

3. Applications

The simulation tool developed here has been applied to the
study of the ion beam formation and ion beam transport out of
the superconducting ECR ion source VENUS at the Lawrence
Berkeley National Laboratory [10]. It consists of an extraction
region, a solenoid focusing lens, and a bending analyzing mag-
net for charge selection. The total length is about 3.5 meters.
As a first application of the computational model developed
here, we have done a simulation of a hydrogen ion beam forma-
tion from the ECR ion source. We have chosen a computational
domain containing the extraction region and about 15 Debye
lengths inside the plasma source from the plasma aperture so
that the formation of ion beam is not sensitive to the location of
the plasma boundary. The boundary condition at the left edge
of the domain is set by the plasma potential φp which can be
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Fig. 11. Transverse rms beam size as a function of distance from the 3D simu-
lation and 2D simulation for a beam with 1 mA current.

found from [18]:

(28)φp = φw − kTe log

(
N∑

i=1

(
ni0

ne0

√
πTime

TeMi

))
,

where k is the Boltzmann constant, φw is the electric extraction
potential on the wall, Mi is the mass of ion species i, me is the
mass of electron, Ti is the ion temperature, ni0 is the ion den-
sity inside the plasma source, ne0 is the electron density inside
the plasma source, and N is the total number of ion species.
The boundary condition on the right edge of the domain is set
as the Neumann boundary conditions. We have also assumed
that the electrons in the plasma follow a Boltzmann density dis-
tribution:

(29)ne = ne0 exp

(
−φp − φ

kTe

)
,

where φ is the space-charge electric potential from the solu-
tion of the Poisson equation including the contributions from
both the electrons and the ions. During each numerical itera-
tion, the electron density is calculated using the electric poten-
tial from last iteration following the Boltzmann ansatz equa-
tion (29). This electron density is added to the ion density
from particle tracking to obtain the total charge density for
the Poisson equation. As an example, Fig. 11 shows a hydro-
gen ion beam formation using an extraction voltage of 7 kV.
The self-consistent plasma boundary can be seen in the fig-
ure. The plasma density and the extraction fields are nicely
matched in this case producing an almost flat plasma bound-
ary.

As another example of applications, we have simulated a
2 mA H+ and H+

2 ion beam transport through the LEBT sys-
tem including the double focusing analyzing magnet. The bend
magnet is treated fully three-dimensionally in this case. Exter-
nal fields from a OPERA-3d vector field calculation are used to
describe magnetic fields of the bend [19]. We have used 20,480
macroparticles and five overlapped segments in the simulation.
The transverse rms size for one charge state of the beam (H+)
as a function of distance is shown in Fig. 12. There is a dou-
ble focusing in both horizontal and vertical directions of the
Fig. 12. Transverse rms beam size as a function of the VENUS LEBT system
distance.

Fig. 13. Fraction of ion beam as a function of the VENUS LEBT system dis-
tance.

beam after the bending magnet. Fig. 13 shows the fraction of
particles survives inside the LEBT system. With the chosen
bending magnet strength set for the H+, all the H+

2 particles
are lost inside the magnet.

4. Conclusions

In this work, we have developed a three-dimensional model
to self-consistently simulate the ion beam formation from
plasma ion sources and the ion beam transport in low energy
beam transport systems through a bending magnet. We have
used an overlapped multi-section model to break the original
large system into a number of small subsystems. We have de-
veloped two new three-dimensional Poisson solvers to calculate
the space-charge forces generated by the beam inside the sub-
system self-consistently. These new three-dimensional Poisson
solvers based on a combination of spectral method and finite
difference multigrid method are more computational efficient
than the finite difference SOR method used in previous stud-
ies. We have also applied the model to studies of the hydrogen
ion beam formation and transport from the ECR ion source at
LBNL. The model developed here can have important appli-
cation in design and optimization of the low energy beam line
optics of the proposed Rare Isotope Accelerator front end.
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