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Abstract

In this paper we present a self-consistent simulation model of colliding beams in high energy ring colliders. The

model, which is based on a particle-in-cell method, uses a new developed shifted effective Green function algorithm for

the efficient calculation of the beam–beam interaction with arbitrary separation and large aspect ratio. The model uses

transfer maps to treat the external focusing elements and a stochastic map to treat radiation damping and quantum

excitation of the beams. In the parallel implementation we studied various strategies to deal with the particular nature

of the colliding beam system – a system in which there can be significant particle movement between beam–beam

collisions. We chose a particle-field decomposition approach instead of the conventional domain decomposition or

particle decomposition approach. The particle-field approach leads to good load balance, reduced communication cost,

and shows the best scalability on an IBM SP3 among the three parallel implementations we studied. A performance test

of the beam–beam model on a Cray T3E, IBM SP3, and a PC cluster is presented. As an application, we studied the

flip–flop instability in an electron–positron collider.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

High energy colliders are essential to study the inner structure of nuclear and elementary particles in

modern physics. In a high energy collider, two counter-rotating charged particle beams moving at speeds
close to the speed of light collide at one or more interaction points where detectors are located. The rate at

which particle production and other events occur inside the detectors depends on a proportionality factor

called the luminosity. Maximizing luminosity is therefore a key issue in high energy colliders. The elec-

tromagnetic interaction between two beams, i.e. the beam–beam interaction, places a strong limit on the

luminosity. An accurate simulation of the beam–beam interaction is needed to help optimize the luminosity

in high energy accelerators.
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The beam–beam interaction has been studied for many years. However, the extreme computational cost

required to accurately and self-consistently model the beam–beam interaction as the beams circulate for

many (typically 104–106) turns has caused most previous studies to use simplified models. Examples include
‘‘weak-strong’’ models, in which only the ‘‘weak’’ beam is affected by the higher intensity ‘‘strong’’ beam

[1–4], soft Gaussian models, where one beam is assumed a priori to have a Gaussian shape, or the pancake

model, where each beam is assumed to be a single two-dimensional disk perpendicular to the direction of

motion of the beam [5–12]. To study the beam–beam interaction fully self-consistently for both beams (i.e. a

‘‘strong–strong’’ formulation), and to include all the physical processes of long range off-centroid inter-

actions, finite beam bunch length effects, and crossing angle collisions, requires computation resources far

beyond the capability of current serial computers. As far as we know, there is no previously developed code

that can simultaneously handle all of these physical processes accurately. In this paper we present a parallel
beam–beam simulation model, with both weak–strong and strong–strong capabilities, that can simulate

these physical processes accurately using high performance computers.

The organization of the paper is as follows: The physical model and computational methods are de-

scribed in Section 2. The parallel implementation is given in Section 3. An application to the study of the

flip–flop instability in an electron–positron collider is given in Section 4. We summarize our results in

Section 5.
2. Physical model and computational methods

In our model of beam dynamics in an accelerator, each charged particle is characterized by its charge,

mass, and phase space coordinates (x, px, y, py , Dz, Dpz=p0). Here, the independent variable, s, is the arc

length along a reference trajectory inside the accelerator, px;y is the transverse momentum normalized by the

total momentum of a reference particle (p0 ¼ E0=c), Dz ¼ s� ctðsÞ with c the speed of light, Dpz ¼ jpj � p0
with p0 the absolute momentum value of the reference particle. The motion of particles will be determined

by several factors, all of which must be included in the model. Externally applied electromagnetic fields
guide the beam and provide transverse and longitudinal focusing. Particles will also lose its energy through

synchrotron radiation, a process that involves radiation damping and quantum excitation. The Coulomb

interaction among the charged particles within a bunch is negligible due to the cancellation of the electric

and magnetic forces at relativistic speeds. However, in the collisions with the oppositely moving beams, the

electric and magnetic forces add up. The resulting beam–beam force is a strongly nonlinear interaction that

can significantly affect the motion of the charged particles. Fig. 1 gives a schematic plot of two colliding
Fig. 1. A schematic plot of the two colliding beams with finite crossing angle.
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beams with a finite crossing angle. In the figure, a is the collision crossing angle, and IP is the interaction

point.

To calculate the electromagnetic forces from the beam–beam interaction, we have to solve the Maxwell
equations in the laboratory frame. Using the Lorentz gauge, the Maxwell equations can be written as

r2/� 1

c2
o2/
ot2

¼ �qðx; y; s; tÞ=�0; ð1Þ
r2A� 1

c2
o2A

ot2
¼ �Jðx; y; s; tÞl0; ð2Þ

where / is the electric scalar potential, A is the magnetic vector potential, c is the speed of light, �0 is the
vacuum permittivity, l0 is the vacuum permeability, q is the charge density, and J is the current density. In

the high energy accelerators, the colliding beams moving with a relativistic speed have very small transverse

and longitudinal momentum spread. Therefore, we can use a paraxial approximation by assuming all

particles moving along the s with speed v0, q ¼ qðx; y; s� v0tÞ, and Js ¼ v0q. Defining a new variable

z ¼ s� v0t, Maxwell�s equations can be rewritten as:

r2
?/þ 1

c2
o2/
oz2

¼ �qðx; y; zÞ=�0; ð3Þ
r2
?As þ

1

c2
o2As

oz2
¼ �Jsðx; y; zÞl0: ð4Þ

In above equations, the vector potential A has only the s component since we have neglected the transverse

current due to the small momentum spread. From the relationship between the current density Js and the

charge density q, we have

Asðx; y; s� v0tÞ ¼
b
c
/ðx; y; s� v0tÞ: ð5Þ

The electromagnetic fields are obtained from:

E ¼ �r/� oA

ot
; ð6Þ
B ¼ r� A: ð7Þ

Writing in transverse and longitudinal components, we obtain,

E? ¼ �r?/; ð8Þ
Es ¼ �ð1� b2Þ o/
oz

; ð9Þ
B? ¼ r � As; ð10Þ
Bs ¼ 0: ð11Þ

For the relativistic colliding beams, b � 1, the longitudinal component of the electric field will vanish,

Es ¼ 0. The Lorentz forces are given by
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F ¼ qEþ qv� B: ð12Þ

Under the paraxial approximation, for the relativistic charged beam, the electric forces and the magnetic
forces will cancel each other within the bunch. However, for the colliding beams, moving in the opposite

directions, the electric forces and the magnetic forces add up. The resultant electromagnetic beam–beam

forces on beam 2 from beam 1 are

F2x ¼ q2E1xð1þ jb1b2jÞ; ð13Þ
F2y ¼ q2E1yð1þ jb1b2jÞ; ð14Þ
F2s ¼ 0; ð15Þ

where b1 ¼ v01=c and b2 ¼ v02=c. By exchanging the subscript 2 with 1, we can obtain the beam–beam forces
on the beam 1 from the beam 2. For the relativistic beams, the c is very large (typically > 1000), Eq. (3) is

reduced to a two-dimensional Poisson equation:

r2
?/ ¼ �qðx; y; zÞ=�0: ð16Þ

The equations of motion for the particles are:

dx
dt

¼ vx; ð17Þ
dpx
dt

¼ F2x
p0

; ð18Þ
dy
dt

¼ vy ; ð19Þ
dpy
dt

¼ F2y
p0

: ð20Þ

After each collision, the changes of the transverse momenta are

Dpx ¼
Z

F2xðx; y; s; tÞ=p0 dt; ð21Þ

Dpy ¼
Z

F2yðx; y; s; tÞ=p0 dt: ð22Þ

The interacting time between two beams is t ¼ z=cðjb1 � b2jÞ, the momentum changes are

Dpx ¼
1

cðjb1j þ jb2jÞp0

Z
F2xðx; y; zÞdz; ð23Þ
Dpy ¼
1

cðjb1j þ jb2jÞp0

Z
F2yðx; y; zÞdz: ð24Þ

Defining an accumulated force �F ¼
R
F ðx; y; zÞdz along z, the momentum changes after the beam–beam

interaction are:
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Dpx ¼
1

cðjb1j þ jb2jÞp0
�F2x; ð25Þ
Dpy ¼
1

cðjb1j þ jb2jÞp0
�F2y ; ð26Þ

where

�F2x ¼ q2�E1xð1þ jb1b2jÞ; ð27Þ
�F2y ¼ q2�E1yð1þ jb1b2jÞ; ð28Þ
�E? ¼ r?�/; ð29Þ

and

r2
?
�/ ¼ ��qðx; yÞ=�0; ð30Þ

where the accumulated transverse charge density is given by

�qðx; yÞ ¼
Z

qðx; y; zÞdz: ð31Þ

In Eqs. (21)–(31), we have assumed that the beam–beam interaction is weak and the beam bunch length

is short so that transverse positions ðx; yÞ will not change significantly during the collision. In some ap-

plications, the beam–beam forces can be strong and the bunch length may not be negligible. We have used a
multiple slice model, to calculate the electromagnetic forces from the beam–beam interaction. In this model,

each beam bunch is divided into a number of slices along the longitudinal direction in the moving frame as

shown in Fig. 1. Each slice contains nearly the same number of particles at different longitudinal locations z.
The collision point between two opposite slices i and j is determined by

sc ¼
1

2
ðzþi � z�j Þ; ð32Þ

where zþi is the longitudinal centroid location of slice i in one beam, z�j is the longitudinal centroid location

of slice j in the opposite beam. The transverse coordinates of the particles in the slice at the collision point

are given by

xc ¼ xþ scpx; ð33Þ
yc ¼ y þ scpy ; ð34Þ

where ðx; yÞ are the transverse coordinates of the particles at the interaction point (IP) with z ¼ 0. The

slopes of the particles are updated using the beam–beam electromagnetic forces at the collision point

following

pxnew ¼ px þ Dpx; ð35Þ
pynew ¼ py þ Dpy ; ð36Þ

where
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Dpx2 ¼
q2

c2m2c2
�Ex1 ; ð37Þ

Dpy2 ¼
q2

c2m2c2
�Ey1 : ð38Þ

In the above equations, the subscripts 1 and 2 pertain to each of the two beams, the corresponding

equations for the other beam are obtained from the above by the exchange 1 $ 2, c ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
,

bi ¼ vi=c, i ¼ x; y; z, q is the charge of the particle, m is the rest mass of particle, and �Ex and �Ey are the

accumulated transverse electric fields generated by the charged particle slice of the opposite moving beam.
After the collision, the particles of each slice drift back to their original locations according to

x ¼ xc � scpxnew ; ð39Þ
y ¼ yc � scpynew : ð40Þ

The maps described in Eqs. (32)–(40) are not symplectic since they have not included the change of

energy deviation during the beam–beam interaction. This is given as [1]:

Dznew2 ¼ Dz2; ð41Þ

ðDpz=p0Þnew2 ¼ ðDpz=p0Þ2 þ
q2

2c2m2c2
�Ex1 px2

��
þ 1

2
Dpx2

�
þ �Ey1 py2

�
þ 1

2
Dpy2

�
þ �Ez1

�
; ð42Þ

where the longitudinal electrical field �Ez due to small finite transverse momentum of individual particle is

�Ez ¼
Z

px
oG
ox

�
þ py

oG
oy

�
f ð�x; �y; px; pyÞd�xd�y dpx dpy ; ð43Þ

where G is the Green�s function of Poisson�s equation which will be defined in the following and f is the

particle distribution in a slice. The calculation of Ez requires two extra convolutions and is computationally
expensive. Normally, the transverse momentum spread is small and the beam–beam kick is weak, the

change of longitudinal momentum can be negligible. We have implemented it as an option in our computer

program and have done a comparison using LHC parameters. There is no visible difference of emittance

growth after 50,000 turns with/without longitudinal momentum update.

The electric fields generated by one slice of the opposite moving beam can be obtained from the solution

of Poisson�s equation. The solution of Poisson�s equation can be written as

�/ðx; yÞ ¼ 1

2p�0

Z
Gðx;�x; y; �yÞ�qð�x; �yÞd�xd�y; ð44Þ

where G is the Green�s function, �q is the accumulated charge density distribution within a slice, (�x; �y) is the
spatial location of the charged particles. For the case of transverse open boundary conditions, the Green�s
function is given by:

Gðx;�x; y; �yÞ ¼ � 1

2
lnððx� �xÞ2 þ ðy � �yÞ2Þ: ð45Þ

Now consider a simulation of an open system where the computational domain containing the particles

has a range of ð0; LxÞ and ð0; LyÞ, and where each dimension has been discretized using Nx and Ny points.

From Eq. (44), the electric potentials on the grid can be approximated as
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�/ðxi; yjÞ ¼
hxhy
2p�0

XNx

i0¼1

XNy

j0¼1

Gðxi � xi0 ; yj � yj0 Þ�qðxi0 ; yj0 Þ; ð46Þ

where xi ¼ ði� 1Þhx and yj ¼ ðj� 1Þhy . This convolution can be replaced by a cyclic convolution in a

double-gridded computational domain [13]:

�/cðxi; yjÞ ¼
hxhy
2p�0

X2Nx

i¼1

X2Ny

j¼1

Gcðxi � xi0 ; yj � yj0 Þ�qcðxi0 ; yj0 Þ; ð47Þ

where i ¼ 1; . . . ; 2Nx, j ¼ 1; . . . ; 2Ny , and

�qcðxi; yjÞ ¼
�qðxi; yjÞ : 16 i6Nx; 16 j6Ny ;
0 : Nx < i6 2Nx or Ny < j6 2Ny ;

�
ð48Þ
Gcðxi; yjÞ ¼

Gðxi; yjÞ : 16 i6Nx þ 1; 16 j6Ny þ 1;
Gðx2Nx�iþ2; yjÞ : Nx þ 1 < i6 2Nx; 16 j6Ny þ 1;
Gðxi; y2Ny�jþ2Þ : 16 i6Nx þ 1; Ny þ 1 < j6 2Ny ;
Gðx2Nx�iþ2; y2Ny�jþ2Þ : Nx þ 1 < i6 2Nx; Ny þ 1 < j6 2Ny ;

8>><
>>:

ð49Þ
�qcðxi; yjÞ ¼ �qcðxi þ 2ðLx þ hxÞ; yj þ 2ðLy þ hyÞÞ; ð50Þ
Gcðxi; yjÞ ¼ Gcðxi þ 2ðLx þ hxÞ; yj þ 2ðLy þ hyÞÞ: ð51Þ

These equations make use of the symmetry of the Green function in Eq. (45). From the above definition,

one can show that the cyclic convolution will give the same electric potential as the convolution Eq. (46)

within the original domain, i.e.

�/ðxi; yjÞ ¼ �/cðxi; yjÞ for i ¼ 1; Nx; j ¼ 1; Ny : ð52Þ

The potential outside the original domain is incorrect but is irrelevant to the physical domain. Since now

both Gc and �qc are periodic functions, the convolution for �/c in Eq. (47) can be computed efficiently using

an FFT as described by Hockney and Eastwood [13].

In the above FFT-based algorithm, the particle domain and the electric field domain are contained in the

same computational domain. Here, the particle domain is the configuration space containing the charged

particles, and the field domain is the space where the electric field is generated by the charged particles. In
the beam–beam interaction, the two opposite moving beams might not overlap with each other. For ex-

ample, in the long-range interaction, the two colliding beams could be separated by more than several r,
where r is the rms size of the beam. Thus the field domain where the electric field is generated by one beam

can be different from the particle domain containing the beam. Fig. 2 gives a schematic plot of the two

separated domains. In this figure, the particle domain has a range from �R to R for x and y, and the field

domain has a range from 0 to 2R for x and y, where R is maximum extent of the beam. The origin of the field

domain in this figure is xc ¼ R, yc ¼ R, where the origin is chosen to be at the beam centroid. In the beam–

beam simulation, the origin of the field domain can be at an arbitrary location and varies from turn to turn.
To apply Hockney�s algorithm directly will require the computational domain to contain both the particle

domain and the field domain, i.e. both beams. Since there is a large empty space between two beams,

containing both beams in one computational domain will result in a poor spatial resolution of the beams.

This is also computationally inefficient because the electric fields in the empty space between two beams are

not used.



Fig. 2. A schematic plot of the particle domain and the field domain.
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To avoid this problem, we have defined a shifted Green function as

Gsðx;�x; y; �yÞ ¼ � 1

2
lnððxc þ x� �xÞ2 þ ðyc þ y � �yÞ2Þ; ð53Þ

where xc and yc are the center coordinates of the field domain. The electric potential in the field domain is
written as

�/ðxþ xc; y þ ycÞ ¼
1

2p�0

Z
Gsðx;�x; y; �yÞ�qð�x; �yÞd�xd�y: ð54Þ

Using the shifted Green function, the center of the field domain is shifted to the center of the particle

domain. The range of x and y cover both the particle domain and the field domain in one computational

domain. The FFT can be used to calculate the cyclic convolution in Eq. (47) using the new Green function.

Here, on the doubled grids, the Green function is given as

Gcðxi; yjÞ ¼ � 1

2

lnððxc þ xiÞ2 þ ðyc þ yjÞ2Þ : 16 i6Nx; 16 j6Ny ;

lnððxc � x2Nx�iþ2Þ2 þ ðyc þ yjÞ2Þ : Nx < i6 2Nx; 16 j6Ny ;

lnððxc þ xiÞ2 þ ðyc � y2Ny�jþ2Þ2Þ : 16 i6Nx; Ny < j6 2Ny ;

lnððxc � x2Nx�iþ2Þ2 þ ðyc � y2Ny�jþ2Þ2Þ : Nx < i6 2Nx; Ny < j6 2Ny :

8>>><
>>>:

ð55Þ

To summarize, using the shifted Green function:

• avoids the requirement that the particle domain and the field domain be contained in one big computa-

tional domain,

• leads to better numerical resolution for the charge densities and the resulting electric fields than the con-

ventional method, because the empty space between the beams is not included in the calculation,

• is far more efficient, in terms of computational effort and storage, than the traditional approach of grid-
ding the entire problem domain.
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As an example of the above FFT-based algorithms, we have computed the radial electric field distri-

bution generated by a round beam with a Gaussian density distribution using the particle domain and the

field domain shown in Fig. 2. Fig. 3 shows the radial electric field Er as a function of distance along the
diagonal line of the field domain using the the shifted Green function, and 128� 128 grid. The electric field

from the analytical calculation is also given in the same figure for comparison. It is seen that the agreement

between the numerical solution and the analytical calculation is excellent.

When the colliding beams have large horizontal (x) to vertical (y) aspect ratio, the straightforward use of

the Green function at each mesh point is not efficient since it requires a large number of mesh points along

the longer direction in order to get sufficient resolution for the Green function along that direction. An

alternative way is to define an effective Green function [14]

�/ðxi þ xc; yj þ ycÞ ¼
hxhy
2p�0

XNx

i0¼1

XNy

j0¼1

�Gsðxi � xi0 ; yj � yj0 Þ�qðxi0 ; yj0 Þ; ð56Þ

where

�Gsðxi � xi0 ; yj � yj0 Þ ¼
Z xi0 þhx=2

xi0 �hx=2
dx0

Z yj0 þhy=2

yj0 �hy=2
dy 0Gsðxi � x0; yj � y0Þ: ð57Þ

This integration can be done analytically using the indefinite integral:Z Z
lnðx2 þ y2Þdxdy ¼ �3xy þ x2 arctanðy=xÞ þ y2 arctanðx=yÞ þ xy lnðx2 þ y2Þ: ð58Þ

As a comparison of this effective Green function and the original Green function, we show in Fig. 4 the

electric field Ey as function of x along the diagonal line of a field domain from the using of the effective

Green function on the mesh, the exact Green function on the mesh, and the analytical error function

calculation. The field domain has been shifted one r along the x axis from the particle domain which has a

Gaussian density distribution and horizontal-to-vertical aspect ratio 30. Here, we have used 128� 128 mesh

points. We see that the fields based on using the effective Green function agree well with the analytical
Fig. 3. Radial electric field as a function of distance along the diagonal line of the particle domain.



Fig. 4. Electric field Ey as a function of distance along the diagonal line of the field domain. Here, the field domain has one r separation

with the particle domain along x axis.
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solution. There is significant discrepancy between the solution using the original Green function and the
analytical calculation. The effective Green function defined in above equation is based on the assumption of

a uniform charge density distribution within a cell. More accurate expression can be obtained using a linear

interpolation of the density distribution within the cell [15].

The effects of external focusing fields can be represented, in the small-amplitude approximation, by a

one-turn linear map, i.e.

xnþ1 ¼ ðcosð2pm0xÞ þ ax sinð2pm0xÞÞxn þ bx sinð2pm0xÞpxn ; ð59Þ
pxnþ1
¼ �cx sinð2pm0xÞxn þ ðcosð2pm0xÞ � ax sinð2pm0xÞÞpxn ; ð60Þ

where ax, bx and cx are lattice functions at the interaction point, and m0x is horizontal lattice tune. A similar

map applies to the vertical phase space y and py by replacing x ! y in above equations. For the longitudinal

phase space, the one-turn map is defined by

Dz=rz

Dpz=rpz

� �
nþ1

¼ cosð2pmsÞ sinð2pmsÞ
� sinð2pmsÞ cosð2pmsÞ

� �
Dz=rz

Dpz=rpz

� �
n

; ð61Þ

where rz and rpz are the rms beam sizes in z and pz, and ms is the synchrotron tune.

The effects of radiation damping and quantum excitation can be represented using a localized stochastic

map.For each particle, with lattice function ax ¼ ay ¼ 0, themap consists of the following transformations [5]:

xnþ1 ¼ kxxn þ r1rx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2x

q
; ð62Þ
pxnþ1
¼ kpxpxn þ r2rpx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2px

q
; ð63Þ
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ynþ1 ¼ kyyn þ r3ry

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2y

q
; ð64Þ
pynþ1
¼ kpy pyn þ r4rpy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2py

q
; ð65Þ
Dznþ1 ¼ kzDzn þ r5rz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2z

q
; ð66Þ
Dpznþ1
¼ kpzDpzn þ r6rpz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2pz

q
; ð67Þ

where the r�s are the nominal rms equilibrium beam sizes in each dimension, the k�s are given in terms of the

damping time s (measured in units of turns) by ki ¼ expð�1=siÞ where i denotes x, y, or z, and the r�s are
independent random numbers satisfying

hrii ¼ 0; ð68Þ
hrirji ¼ dij: ð69Þ

The first term in the above transformation represents the radiation damping, and the second term repre-

sents the quantum excitation.

When two beams approach each other with a finite angle, a transformation is used to change the crossing

angle collision in the laboratory frame into a head-on collision in the boosted moving frame. The trans-

formation is given by [4]

x� ¼ xð1þ h�x cosðwÞ sinðaÞÞ þ yh�x sinðwÞ sinðaÞ þ z cosðwÞ tanðaÞ; ð70Þ
y� ¼ xh�y cosðwÞ sinðaÞ þ yð1þ h�y sinðwÞ sinðaÞÞ þ z sinðwÞ tanðaÞ; ð71Þ
z� ¼ xh�z cosðwÞ sinðaÞ þ yh�z sinðwÞ sinðaÞ þ z= cosðaÞ; ð72Þ
p�x ¼ px= cosðaÞ � h cosðwÞ tanðaÞ= cosðaÞ; ð73Þ
p�y ¼ py= cosðaÞ � h sinðwÞ tanðaÞ= cosðaÞ; ð74Þ
p�z ¼ pz � px cosðwÞ tanðaÞ � py sinðwÞ tanðaÞ þ h tan2ðaÞ; ð75Þ

where w is the crossing plane angle in the x� y plane, a is the half crossing angle in the ~x� z plane,

h ¼ pz þ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpz þ 1Þ2 � p2x � p2y

q
, h�i ¼ o

op�i
h�ðp�x ; p�y ; p�z Þ, and h�ðp�x ; p�y ; p�z Þ ¼ hðp�x ; p�y ; p�z Þ.
3. Parallel implementation

Following the above physical model, we have used a particle-in-cell method to calculate the electro-

magnetic fields at the beam–beam interaction point. Outside the interaction point, the particles are

transported through the accelerator using the one-turn lattice map and the radiation damping/quantum

excitation map. The fact that the lattice map can cause significant particle movement has important

ramifications for the parallelization strategy. During the development of the code we have studied the
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performance of three methods: domain decomposition, particle decomposition, and particle-field decom-

position.

In the domain decomposition approach the spatial domain is divided into a number of subdomains, with
each subdomain mapped onto a single processor [16,17]. The particles with their spatial positions inside the

subdomain are assigned to that processor. When particles move out of their spatial subdomain, they are

sent to the processor containing the corresponding spatial subdomain. After all particles are local to each

processor, the Poisson equation is solved on the grid and the particles are advanced using the electro-

magnetic fields. To improve the efficiency, a load balance scheme can be used to ensure that each processor

contains about the same number of particles. The domain decomposition works well when the particles do

not move too far from their positions during each time step. This means that only neighboring processor

communication is required. However, in the simulation of colliding beams, after each turn the particles can
move a long distance due to the action of external maps. (The colliding beam code is a quasi-static particle-

in-cell code, not a fully electromagnetic code, there is no Courant condition. The large movement of

particles is not an artifact of the numerical implementation, but instead is a physical effect associated with

the fact that particles undergo many oscillations as they are transported around the collider between beam–

beam collision points.) A lot of communication is required to move these particles to their local processors.

Meanwhile, even though the domain decomposition approach can achieve a load balance of particles, the

solution of the Poisson equation is not balanced since each processor has a different number of compu-

tational grids, i.e. a different size of subdomain.
Perfect load balance can be achieved, and particle movement avoided, by using a particle decomposition

approach [18]. In this approach, the particles are uniformly distributed among processors. Each processor

contains the whole spatial domain. To solve the Poisson equation, the particles are deposited onto the

global computational grid, collected and broadcast to all processors. Each processor now owns the charge

density distribution of the whole domain, and the Poisson equation is solved within this domain. Unfor-

tunately this implementation does not take advantage of the parallelism in the solution of the Poisson

equation. To overcome this drawback, in this paper we have proposed a particle-field decomposition ap-

proach as the strategy that is best suited to the parallel implementation of the particle-in-cell method for
modeling colliding beams.

In the particle-field decomposition approach, each processor possesses the same number of particles and

the same number of computational grid points, i.e, the same size of spatial subdomain. Fig. 5 shows a

schematic plot of the particle-field decomposition among three processors. We see that the global com-

putational mesh has been uniformly distributed among three processors. Each processor also has the same

number of particles. The spatial coordinates of the particles on each processor may not stay within the

spatial mesh domain of that processor. In the process of solving the Poisson equation, the particles are

deposited onto the computational grid to obtain the charge density distribution. For the particles with
spatial positions outside the local subdomain, an auxiliary computational grid is used to store the charge

density. After the deposition, the charge density stored on the auxiliary grid will be sent to the processor

containing that subdomain. With charge density local to each processor, the Poisson equation is solved in

parallel on a local subdomain using the shifted Green function method. Since each processor contains the

same number of computational grid points, the work load is well balanced among all processors. The

solution of the electric potential on the local subdomain is sent to all processors. With the electric potential

on each processor, the electric field is calculated on the grid and interpolated onto individual particles of the

opposite beam. The particles are advanced using the electromagnetic field and the external maps. Since each
processor contains the same number of particles, the work of this process is also well balanced among

processors. The volume of communication in the particle-field decomposition approach is proportional to

the number of computational grid points instead of the number of moving particles in the domain de-

composition approach. Since, in the study of beam–beam interactions, the number of particles is much

larger than the number of computational grid points, e.g. 106 vs. 104, the particle-field decomposition



Fig. 5. A schematic plot of the particle-field decomposition among three processors.
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approach can significantly reduce the communication cost in the simulation. Fig. 6 shows a comparison of
the speedup as a function of number of processors on an IBM SP3 computer using above three parallel

implementation approaches for a single slice beam–beam model with one million particles and 128� 128

grid points. We see that the particle-field decomposition method has the best scalability among three im-

plementations. The speedup of the domain-decomposition approach saturates at 16 processors due to

the large amount of time spent moving the particles among the processors. The particle decomposition
Fig. 6. Speedup as a function of number of processors on IBM SP3 with particle-field decomposition, particle decomposition and

domain decomposition.
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approach does not take advantage of the parallelism in the field calculation and has a poorer performance

than the particle-field decomposition. For example, on 32 processors, the domain-decomposition approach

spends 86 s within the particle manager function moving the particles around the processors, while the total
beam–beam simulation time is 114 s. In the calculation of electromagnetic fields, it takes about 16 s on 32

processors using the particle decomposition approach. It takes about 6 s using the particle-field decom-

position approach. Even though the scalability of the field calculation in the particle-field decomposition

approach is not perfect due to the significant communication cost associated with data collecting and

transpose, it does show better performance than the particle decomposition approach, where the field

calculation is done in serial.

Having adopted the particle-field decomposition approach, we next divide the total number of pro-

cessors into two groups, with each group responsible for one beam, and each processor in a group con-
taining the same number of particles. We furthermore divide each beam longitudinally into a specified

number of slices. The processors in each group are arranged logically into a two-dimensional array with

each column of the array containing a number of slices which are assigned to this column of processors

cyclically along the row direction. This gives a good load balance of slices among different column pro-

cessors. Within each column, the computational grid associated with each slice is decomposed uniformly

among all the column processors. This provides the parallelization in the solution of the Poisson equation.

As a test of the parallel performance, we have measured the speedup as a function of number of pro-

cessors on a Cray T3E, IBM SP, and a PC cluster at Lawrence Berkeley National Laboratory. The results
are given in Fig. 7. Here, we have used five slices for each beam with two million particles and a com-

putational grid of size 64� 64. We see that the program scales up to 128 processors with an efficiency of 65–

80% on all three machines. The speedup on the less expensive PC cluster appears to be better than that on

the high performance, more expensive parallel machines, which is against general belief. To clarify this

issue, we also show in Fig. 8 the total computing time as a function of number of processors on all three

machines. We see that the dedicated parallel computers IBM SP3 and Cray T3E are still a factor of 2–3

faster than the PC cluster. A check of the time spent on the communication and computation indicates that

in this example, the relative fraction of the communication time in the total computing time on the PC
cluster is less than that on the other two parallel computers. For example, on 128 processors, the com-
Fig. 7. Speedup as a function of number of processors on Cray T3E, IBM SP3, and PC cluster.



Fig. 8. Total computing time as a function of number of processors on Cray T3E, IBM SP3, and PC cluster.
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munication time is 3.4 s out of 19.0 s of total computing time on the PC cluster and 2.9 s out 10.5 s on the

Cray T3E. While the communication time is slightly less on the T3E than that on the PC cluster, the

computation speed on the T3E is about a factor of two faster than the PC cluster. (Here, the single pro-
cessor double precision peak performance on the 450 MHz T3E is 900 Mflops while the 866 MHz Pentium

III on the PC cluster takes a few cycles to do one double precision operation.) This results in a relatively

larger fraction of communication cost on the T3E than that on the PC cluster, which causes the lesser

scalability of the T3E for this test example. The speedup on IBM SP3 shows initial superlinear behavior

below 64 processors. This superlinear behavior might be due to the finite cache size effects on a small

number of processors. The IBM SP3 processor has about 200 KB L1 cache and about 8 MB L2 cache. This

corresponds to about 166 K particles in data storage, where each particle occupies 48 bytes. In a case using

small number of processors, each processor will hold more particle and field data than the case using a
larger number of processors. This leads to more memory access time in the case involving a small number of

processors. For example, on four processors, for two million particles, each processor holds 500,000

particles which cannot be stored in the L2 cache. On 32 processors, each processor holds 62,500 particles

which can fit in the L2 cache. However, with continuing increase of processor number, the communication

time among the processors increases and the speedup falls below linear scalability eventually. For example,

on 32 processors of SP3, the communication time is 2.8 s out of the 19.6 s of total computing time. On 128

processors, the communication time is 3.9 s out of 8.1 s of total computing time. The increased commu-

nication cost on large number of processors is due to the fact that each node of IBM SP3 has 16 processors
but with only two switches to communicate among the nodes.
4. Application

As an application of the parallel particle-in-cell beam–beam model, we have studied the flip–flop in-

stability which has been observed in operating eþ–e� colliders. During the flip–flop instability, the shape of

the beams are distorted. The two beams start out with the same sizes and end up in a state with unequal
sizes. The parameters used in this study are similar to those used by Krishnagopal [19]. In that study, the



Fig. 9. Vertical rms beam size as a function of turn number in an electron–positron collider with transverse damping time 1000 turn.
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aspect ratio was limited to 8 in order to reduce the computational time. However, eþ–e� colliders can
operate with aspect ratios much greater than this. The aspect ratio in real eþ–e� colliders ranges from 10 to

100, depending on the specific machine parameters. In our study, using the parallel particle-in-cell model

with the shifted effective Green function, we can model such high aspect ratios. As an example, Fig. 9 shows

the transverse rms sizes of two-colliding beams as a function of turns in an electron–positron ring collider

with an aspect ratio of 100. We see that the two beams have the same initial rms sizes. After 50,000 turns,

the rms sizes of the beams end up with unequal sizes in the vertical plane. This imbalance results in a

reduction of the overlap integral and consequently, in a reduction of the luminosity. Maximizing the lu-

minosity is a key issue in modern colliders, since it affects the number of events observed in the detectors.
5. Summary

In this paper, we have presented a parallel simulation model to study beam–beam effects in high energy

colliders. The electromagnetic fields between the two colliding beams are calculated using a parallel particle-

in-cell approach with a new developed shifted effective Green function algorithm. Using the shifted effective

Green-function, this algorithm allows to calculate the beam–beam forces with large horizontal to vertical
aspect ratio and arbitrary separation efficiently. In the parallel implementation, a particle-field decompo-

sition approach has been proposed. This approach shows better scalability than either the domain de-

composition approach or the particle decomposition approach due to the nature of the particle movement

in beam–beam collision dynamics. A performance test of the multi-slice beam–beam model shows rea-

sonable scalability up to 128 processors on a Cray T3E, IBM SP3 and a PC cluster. As an application, we

have studied the flip–flop instability in an electron–positron collider. The appearance of flip–flop instability

will reduce the luminosity and should be avoided in the collider design. In conclusion, the development of a

parallel code that simultaneously treats the effects of multiple beam–beam phenomena (head-on collisions,
long-range collisions, crossing-angle effects, finite bunch length effects, etc.), represents a new and powerful

capability that will be useful for understanding and improving the operational characteristics of present and

future colliders.
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