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We present an object-oriented three-dimensional parallel particle-in-cell (PIC)
code for simulation of beam dynamics in linear accelerators (linacs). An important
feature of this code is the use of split-operator methods to integrate single-particle
magnetic optics techniques with parallel PIC techniques. By choosing a splitting
scheme that separates the self-fields from the complicated externally applied fields,
we are able to utilize a large step size and still retain high accuracy. The method
employed is symplectic and can be generalized to arbitrarily high order accuracy if
desired. A two-dimensional parallel domain decomposition approach is employed
within a message-passing programming paradigm along with a dynamic load bal-
ancing scheme. Performance tests on an SGI/Cray T3E-900 and an SGI Origin 2000
show good scalability of the object-oriented code. We present, as an example, a sim-
ulation of high current beam transport in the accelerator production of tritium (APT)
linac design. c© 2000 Academic Press
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I. INTRODUCTION

The simulation and analysis of charged particle beam transport is an important subject
in accelerator design and optimization. The increasing interest in high-intensity beams for
future accelerator applications presents challenging problems that require one to understand
and predict the dynamics of beams subject to complicated external focusing and accelerating
fields, as well as the self-fields caused by Coulomb interaction of the particles. One approach
to studying the behavior of these particles is to use envelope equations [1–3]. These equations
are a set of ordinary differential equations for the second-order moments of the particle
distribution and can be calculated quickly. However, the envelope equations do not provide a
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detailed description of the beam. Furthermore, integration of the envelope equations requires
information about certain aspects of the beam’s evolution (such as the beam emittance) that
is not generally knowna priori. Future accelerator applications place extremely stringent
requirements on particle loss, which is associated with the low-density, large-amplitude
halo of the beam. The need to model the details of the beam distribution, in the presence
of strong self-fields, leads us to a full Poisson–Vlasov description to better understand and
predict the behavior of intense charged particle beams in accelerators.

The Poisson–Vlasov equations can be solved using a phase space grid-based method
or a PIC method. The grid-based method is effective in one and two dimensions [4]; but
for three-dimensional systems with six phase space variables, the grid-based method will
require an enormous amount of memory even for a coarse grid. Also, grid-based methods
may break down when very-small-scale structures form in the phase space. The PIC method
has a much lower storage requirement and will not break down even when the phase space
structure falls below the grid resolution. This method is widely used to study the dynamics
of high-intensity beams in accelerators [5–9].

The computational time cost associated with using a large number of numerical particles
restricts that number and limits the accuracy of PIC calculation on serial computers. The
parallel PIC method, which was developed largely by the plasma physics community and, to
a lesser extent, by the astrophysics community, has made it possible to perform large-scale
PIC simulations on multiprocessor platforms [10–17]. The parallel PIC approach provides
a means of reducing fluctuations by enabling use of more particles and of improving spatial
resolution through increased grid density. It also dramatically reduces the computation time.
However, except in a few cases [7, 18], the parallel PIC approach has not been widely used
in the accelerator community.

In this paper, we present an object-oriented parallel PIC code for beam dynamics simu-
lation in linear accelerators (linacs). The object-oriented approach gives the program good
maintainability, reusability, and extensibility. In addition to describing the object-oriented
implementation on parallel computers, we will describe the use of split-operator meth-
ods, which provide a powerful means of including space-charge effects in single-particle
beam transport codes. The result is a multiparticle capability that combines sophisticated
techniques of magnetic optics with those of parallel PIC simulation.

The organization of this paper is the following: The physical model and numerical meth-
ods are described in Section II. The parallel PIC algorithm using MPI on distributed parallel
machines is discussed in Section III. The object-oriented software design for beam dynamics
simulation is given in Section IV. Performance tests are given in Section V. An application of
the code to a simulation of the APT linac design is presented in Section VI. The conclusions
are drawn in Section VII.

II. PHYSICAL MODEL AND NUMERICAL METHODS

The equations governing the motion of individual particles in an accelerator (in the
absence of radiation) are Hamilton’s equations,

dq
dt
= ∂H

∂p
dp
dt
= −∂H

∂q
, (1)

whereH(q, p, t)denotes the Hamiltonian of the system, and whereq andp denote canonical
coordinates and momenta, respectively. Letζ denote the six-vector of coordinates and
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momenta. In the language ofmappings, which are a major theme in modern accelerator
physics, we would say that there is a (generally nonlinear) map,M, corresponding to the
Hamiltonian,H , which maps initial phase space variables,ζ i , into final variables,ζ f , and
we write

ζ f =Mζ i . (2)

Sophisticated techniques now exist for computing maps corresponding to externally applied
electromagnetic fields to essentially any order, for combining and manipulating maps, for
applying maps to phase space coordinates (or functions of the coordinates), and for analyzing
maps [19]. Note that Hamilton’s equations can be rewritten as

dζ

dt
= −[H, ζ ], (3)

where [ , ] denotes the Poisson bracket. The corresponding equation governing the beam
distribution function,f (ζ, t), is simply the Liouville equation,

d f

dt
= ∂ f

∂t
− [H, f ] = 0, (4)

from which we obtain

∂ f

∂t
= [H, f ]. (5)

It is straightforward to show that the evolution of a distribution function (i.e., the solution
of Eq. (5)) is also contained inM. Namely, a distribution functionf (ζ, t) whose initial
value is f 0(ζ ) = f (ζ, 0) evolves according to

f (ζ, t) = f 0(M−1ζ ). (6)

So far we have implicitly assumed that we are dealing with particles subject only to
externally applied fields. We can treat the dynamics in the presence of external fields and self-
fields (i.e., space-charge fields) by including them both in the single-particle Hamiltonian.
In many cases one can write

H = Hext+ Hsc, (7)

where Hext denotes the Hamiltonian in the absence of self-fields andHsc denotes the
Hamiltonian associated with the space-charge fields. In accelerator physics,Hext is of-
ten an extremely complicated function, perhaps containing hundreds of thousands of terms.
This is due to the fact that it normally involves Taylor expansion of the Hamiltonian in
order to perform high-order perturbation theory around a reference trajectory. In contrast
with the treatment of external fields, self-fields governed byHsc are not normally treated as
power series in the canonical variables because the variation over the domain of interest is
too great. In many casesHsc is simply proportional to the scalar potentialφ, which satisfies
the Poisson equation,

∇2φ(q) = −ρ(q). (8)

The combination of Eqs. (5) and (8) constitutes the Poisson–Vlasov system of equations.
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Our approach to solving these equations involves the use of split-operator methods. As
just mentioned, beam dynamics calculations often involve a Hamiltonian that can be written
as a sum of two parts,H = Hext+ Hsc. Such a form is ideally suited for the application
of symplectic split-operator methods [20]. More generally, consider a Hamiltonian that
can be written as a sum of two parts,H = H1+ H2, where each part, separately, can be
solved exactly or to some desired accuracy or order. In other words, suppose that we can
compute the mappingM1 corresponding toH1 and the mappingM2 corresponding toH2.
In our caseH1 includes the external fields, andM1 can be computed to any order using the
techniques of magnetic optics; the second term,H2, corresponds to the space-charge fields,
and can be dealt with using parallel particle simulation techniques. GivenM1 andM2, the
following algorithm is accurate through second order inτ ,

M(τ ) =M1(τ/2)M2(τ )M1(τ/2) , (9)

whereτ denotes the time step. (In accelerator physics, one often uses a coordinate as the
independent variable. However, for the sake of this discussion we will continue to refer
to τ as a time step.) The second-order accuracy of this algorithm is easily demonstrated
using Lie methods [21, 22]. From Eq. (3), we can write the formal solution of Hamilton’s
equations as

ζ(τ ) = exp(−τ : H :) ζ(0). (10)

Here, we have defined a differential operator :H : as :H : g = [H, g], for arbitrary function
g. For a Hamiltonian that can be written as a sum of two partsH = H1+ H2, we have the
formal solution

ζ(τ ) = exp(−τ(: H1 : + : H2 :)) ζ(0). (11)

For noncommutative operatorsX andY, the Campbell–Baker–Hausdorff formula states
that

exp(X) exp(Y) = exp

(
X + Y + 1

2
{X,Y} + 1

12
({X, {X,Y}} + {{Y, X},Y})+ · · ·

)
,

(12)

where the{X,Y} denotesXY− Y X [23–25]. By repeated application of the Campbell–
Baker–Hausdorff formula, we obtain

exp(−τ(: H1 : + : H2 :))

= exp

(
−1

2
τ : H1 :

)
exp(−τ : H2 :) exp

(
−1

2
τ : H1 :

)
+ O(τ 3), (13)

where exp(− 1
2τ : H1 :) defines mapM1 and exp(−τ : H2 :) defines mapM2. Therefore,

Eq. (9) has second-order accuracy, as stated.
As a side note, if we were to use a different splitting in whichH1 depended only on

momenta andH2 depended only on positions, then this algorithm would be the same
as the well-known leapfrog algorithm. However, the split-operator approach provides a
powerful framework capable of dealing with the far more complicated Hamiltonians often
encountered in accelerator physics. The method is easily generalized to more terms (i.e.,
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more splittings) if necessary. Furthermore, symplectic split-operator methods are easily
generalized to higher order accuracy. IfM2n denotes a time-reversible approximation that
is accurate to order 2n, then the following is accurate to order 2n+ 2 [26],

M(s)2n+2 =M(x0s)2nM(x1s)2nM(x0s)2n, (14)

wherex0 andx1 are given by

x0 = 1

2− 21/(2n+1)
(15)

x1 = −21/(2n+1)

2− 21/(2n+1)
. (16)

There are also implicit symplectic methods based on this approach that do not require the
Hamiltonian to be split into a sum of exactly solvable pieces [20].

If we treatM1 as corresponding to the external fields andM2 as corresponding to the
space-charge fields, Eq. (9) describes an algorithm treating both single-particle magnetic
optics effects and space-charge effects. A time step involves the following: (1) transport
of a numerical distribution of particles through half a step based onMext, (2) solution of
Poisson’s equation based on the particle positions and performance of a space-charge “kick”
(i.e., an instantaneous change in momenta, sinceHsc depends only on coordinates, hence
Msconly affects momenta), and (3) transport through the remaining half of the step based on
Mext. If the space charge is intense, this can be performed repeatedly on successive pieces of
a beamline element; if the space charge is weak, it may be possible to achieve good accuracy
by computing the space-charge kicks infrequently, in which caseMext would correspond
to a string of elements within a half step. Thus, an important feature of this approach is that
it enables one to use large time steps (i.e., large steps in the independent variable) in the
regime of weak or moderate space charge. Essentially, it enables one to decouple the rapid
variation of the externally applied fields from the more slowly varying space-charge fields.
If more accuracy is required, one can use the fourth-order method of Forest and Ruth [21];
however, this requires three space-charge calculations per full step instead of just one, and
since this dominates the execution time it is costly.

Finally, a subtle point is that, while most beam dynamics codes use a coordinate as the
independent variable (typically the longitudinal coordinatez in a linac code), Poisson’s
equation has to be solvedat a fixed time. Thus, prior to every space-charge calculation it
is necessary to convert from the canonical coordinates and momenta currently in use to the
more usual coordinates and momenta in which(x, y, z) are known at a fixed time. Such a
calculation makes sense and is easily accomplished if the particle motion is essentially bal-
listic over a distance corresponding to the bunch length, since a bunch contains a distribution
of arrival times, and they must all be moved to a fixed time.

In summary, split-operator methods provide the “glue” to join two major fields: magnetic
optics and parallel particle simulation techniques. All that is required is (1) the ability to
compute maps corresponding to external fields, (2) the ability to compute the space-charge
fields (normally accomplished using a parallel Poisson solver), and (3) a knowledge of the
particle positions at fixed time or the ability to compute them.

The physical system for beam dynamics studies consists of the beam and the accelerating/
transport system, which in turn contains a number of accelerating and focusing elements. In
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the present paper, these elements consist of drift spaces, magnetic quadrupoles, and radio-
frequency cavities (RF accelerating gaps). LetKext denote the Hamiltonians corresponding
to these elements, with the axial coordinatez as the independent variable. In this case, the
canonical coordinates and momenta are(X, Px,Y, Py, T, Pt ), whereT denotes arrival time
andPt denotes the negative energy. The Hamiltonians for various beamline elements are as
follows:

For the drift tube,Kext is [27]

Kext = 1

2

(
P2

x + P2
y

)+ 1

2γ 2
0 β

2
0

P2
t . (17)

For the magnetic quadrupole,Kext is [27]

Kext = 1

2

(
P2

x + P2
y

)+ 1

2
k(z)(X2− Y2)+ 1

2γ 2
0 β

2
0

P2
t , (18)

where the focusing strength,k(z), is related to the quadrupole gradient according to

k(z) = q

p0
g(z). (19)

For the accelerating RF gap,Kext is [28]

Kext = δ

2lp0

(
P2

x + P2
y

)+ l

2δ

[
1

p0

(
q

2ω
e′ sinφs

)2

− q

2ω

(
e′′ + w

2

c2
e

)
sinφs

]
(X2+ Y2)

−qe′ sinφs

2p0ω
(X Px + Y Py)+ m2ω2lδ

2(p0)3
P2

t −
ωqesinφs

2ω2lδ
T2, (20)

wheree is the on-axis electric field in the gap,φs is given byφs = ωt g(z)+ θ , andp0(z) is
the design momentum. In order to computeMext for the RF gap, one needs to numerically
solve the equations of motion for the design trajectory inside the gap. These equations are
given by

(tg)′ = −pg
t /c√(

pg
t

)2−m2c4
(21)

(
pg

t

)′ = −qe(z) cos(ωt g + θ). (22)

Last, in addition to the Hamiltonians for the various external elements, we need the
Hamiltonian corresponding to the space-charge field. This is given by

Kself = q/δc

lβg(γ g)2
φ, (23)

which includes the effect of both the electrostatic field and the azimuthal magnetic field.
The potentialφ can be obtained by convolving the charge density with a Green’s function.
In our code, the charge density is obtained by depositing the particles onto a grid using a
cloud-in-cell (CIC) scheme. The same scheme is used to interpolate the field from the grid
back onto the particles. The potential is expressed as

φp,q,r =
∑

Gp−p′,q−q′,r−r ′ρp′,q′,r ′ , (24)

whereG is the Green’s function on the grid, andρ is the charge density on the grid. Often,
the beam size is much smaller than the inside wall radius of the accelerator, in which
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case we may treat the beam as an isolated system. In such a case, the above convolution
can be calculated using a Fast fourier transform (FFT) technique given by Hockney and
Eastwood [29].

III. PARALLEL PARTICLE-IN-CELL ALGORITHM

A message-passing programming paradigm with MPI (message-passing interface) is
employed in our parallel PIC simulation. MPI is a standard library of message-passing
programs bound to C (C++) and Fortran [30]. In this paradigm, a computer program creates
one or more processes. Each process can execute the same program or a different program
with local data. In most implementations, each process is mapped to a physical processor
with a unique identification number. When the data from more than one processor are
required, explicit communication is performed by calling library routines to send or receive
messages from other processors. Hence, in this programming model, the programmer has to
control the data distribution on the processors and communication among processors. This
gives it the advantage of flexibility compared with the data-parallel programming model.
However, this also increases the difficulty of parallel programming compared with the data-
parallel programming model. Applying object-oriented design to parallel message-passing
programming helps to encapsulate the details of communication and data distribution. This
enables the user to manage the applications at a higher level.

A two-dimensional domain-decomposition approach is employed in our parallel particle
simulation [10, 14]. A schematic plot of the two-dimensional decomposition on they–z
plane is shown in Fig. 1. The solid grid lines define the computational domain grids. The
dashed lines define the local computational domain on each processor. Here, the boundary
grids are the outermost grids inside the physical boundary. The guard grids are used as tem-
porary storage of grid quantities from the neighboring processors. The physical computa-
tional domain is defined as a three-dimensional rectangular box with rangexmin ≤ x ≤ xmax,
ymin ≤ y ≤ ymax, andzmin ≤ z≤ zmax. This domain is decomposed on they–z plane into a
number of small rectangular blocks. These blocks are mapped to a logical two-dimensional
Cartesian processor grid. Each processor contains one rectangular block domain. The range

FIG. 1. A schematic plot of two-dimensional decomposition on they–z domain.
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of a block on a single processor is defined asxmin ≤ x ≤ xmax, ylcmin ≤ y ≤ ylcmax, and
zlcmin ≤ z≤ zlcmax. Here, the subscripts lcmin and lcmax specify local minimum and local
maximum. The mesh grid is defined to store the field-related quantities such as charge
density and electric field. The number of grid points along three dimensions on a single
processor is defined as

N xlocal = int[(xmax− xmin)/hx] + 1 (25)

N ylocal = int[(ylcmax− ymin)/hy] − int[(ylcmin− ymin)/hy] + Ng (26)

Nzlocal = int[(zlcmax− zmin)/hz] − int[(zlcmin− zmin)/hz] + Ng,
(27)

wherehx, hy, andhzare the mesh sizes along thex, y, andz directions, respectively. The
quantityNg refers to the number of guard grids inN ylocal andNzlocal. Ng = 2 if the number
of processors in that dimension is greater than 1; otherwise,Ng = 1. For the processor
containing the starting grid in the global mesh, there is one more grid point along they and
z directions. The particles with spatial positions within the local computational boundary
are assigned to the processor containing that part of physical domain.

The parallel computation starts with constructing a 2-D logical Cartesian processor grid,
reading input data from processor 0 and broadcasting it to the other processors, setting up
the local initial computational domain, initializing objects, and generating particles from
the initial distribution function. There are three approaches to generating the particles local
to the processor at the beginning of the simulation. In the first approach, each processor
generates the average number of particles by sampling the whole initial distribution. Then
explicit all-to-all communication is used to send the particles to the appropriate processors.
This approach has the advantage that each processor need only generate a fraction of the
particles. However, the communication cost will increase with increasing numbers of pro-
cessors and particles, which makes this approach less scalable. In the second method, each
processor generates all the particles to be used in the simulation; only particles local to the
processor are kept, and the other particles not local to the computational domain are thrown
away. This approach avoids the communication cost and can be used when the problem size
and the number of processors used are not large, e.g., in our performance benchmark simu-
lations where the initialization time is negligible. Nevertheless, this approach is extremely
inefficient when a large number of processors are used since the time cost is the same
regardless of the number of processors. In the third approach, each processor generates the
average number of particles by sampling a part of the initial distribution using a rejection
method [31]. This part of the initial distribution contains the computational domain local
to the processor. Hence, the particles generated from this distribution will be local to the
processor. There is no need for communication. This approach has the advantage of scal-
ing with increasing number of processors. The disadvantage of this approach is that the
result may not be reproducible using a different number of processors partly because of
the difference in random number generation on each processor. This approach was used
to generate an initial Gaussian distribution for the simulation of the APT superconducting
linac described in Section VI.

The particles generated on each processor advance following the maps defined in Sec-
tion II. If a particle moves outside the local computational domain, it is sent to the processor
corresponding to where it is located. A particle manager function is defined to handle
explicit communication among two-dimensional processor grids using MPI. They andz
positions of every particle on each processor are checked. The particle is copied to one
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of its four buffers and sent to one of its four neighboring processors when itsy or z po-
sition is outside the local computational domain. After a processor receives the particles
from its neighboring processors, it will decide whether to send some of them further out.
The outgoing particles are counted and copied into four temporary arrays. The remain-
ing particles are copied into another temporary array. This process is repeated until no
outgoing particle is found on any processor. Then, the particles in the temporary storage,
along with the particles left in the original particle array, are copied into a new particle
array.

After each particle moves to its local computational domain, a linear CIC particle-
deposition scheme is carried out for all processors to determine the charge density on
the grid. The particles located between the boundary grid and the computational domain
boundary will also contribute to the charge densities on the boundary grids of neighboring
processors. Hence, explicit communication is required to send the charge density on the
guard grids, which is from local particle deposition, to the boundary grids of neighboring
processors to sum up the total charge density on the boundary grids. With the charge den-
sity on the grids, Hockney’s FFT algorithm is used to solve Poisson’s equation with open
boundary conditions. Due to this algorithm, the original grid number is doubled in each
dimension. The charge density on the original grid is kept the same, and the charge density
elsewhere is set to 0. The Green’s function on the original grid is defined as

Gp,q,r = 1√
(hx(p− 1))2+ (hy(q − 1))2+ (hz(r − 1))2

, (28)

where p = 1, . . . , N x+ 1, q = 1, . . . , N y+ 1, andr = 1, . . . , Nz+ 1. Here,N x, N y,
and Nz are the computation grid number, in all three dimensions. For points outside the
original grid, symmetry is used to define Green’s function according to

Gp,q,r = G2N x−p+2,q,r (29)

Gp,q,r = Gp,2N y−q+2,r (30)

Gp,q,r = Gp,q,2Nz−r+2,
(31)

where p = N x∗local+ 2, . . . ,2N x, q = N y∗local+ 2, . . . ,2N y, and r = Nz∗local+ 2, . . . ,
2Nz. Communication is required to double the original distributed three-dimensional grid
explicitly. This can be avoided by including this process in the three-dimensional FFT. In
the three-dimensional parallel FFT, we have taken advantage of the undistributed dimen-
sion along thex dimension, where a local serial FFT can be done in that dimension for
all processors. A local temporary two-dimensional array with size(2N x, N ylocal) is de-
fined to contain part of the charge density at fixedz. The charge density on the original
grid is copied into the(N x, N ylocal) part of the temporary array. The rest of the tempo-
rary array is filled with 0. In regard to the FFT of the Green’s function, symmetry can be
used to obtain the values of the Green’s function in the region(N x+ 2, N ylocal). After the
local two-dimensional FFT alongx is done, it is copied back to a slice of a new three-
dimensional array with size(2N x, N ylocal, Nzlocal). A loop throughNzlocal gives the FFT
alongx for the three-dimensional array. Then, a transpose is used to switch thex and y
indices. Now, the three-dimensional matrix has size(N y, N x′local, Nzlocal). Here,N x′local

is the new local number of grids in thex dimension along they dimension processors.
A similar process is performed to obtain the FFT along they direction for a double-size
grid of size(2N y, N x′local, Nzlocal). Another transpose is used to switch they andz indices
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and a local FFT alongz with a double-size grid is done on all processors to finish the
three-dimensional FFT for the double-size grid in all three dimensions. During the inverse
parallel FFT, a reverse process is employed to obtain the potential on the original grids. In
the transpose of indices, global all-to-all communication is used.

From the potential on the grid, we calculate the electric field on the grid using a central
finite difference scheme. To calculate the electric field on a boundary grid, the potential on
a boundary grid of neighboring processors is required. A communication pattern similar
to that employed in the charge density summation on the boundary grids is used to send
the potential from the boundary grids to the guard grids of neighboring processors. After
the electric field on the grids is obtained, it has to be interpolated from the grids onto the
local particles to push the particles. Since we have used the linear CIC scheme, the electric
field of the particles between the boundary grid and the computational domain boundary
will also depend on the electric fields on the boundary grids of neighboring processors. A
similar communication pattern is used to send the electric field from the boundary grids
to the guard grids of the neighboring processors. With the electric fields on grids local
to each processor, the interpolation is done for all processors to obtain the space-charge
force on every particle. The local particles are updated in momentum space based on the
space-charge force. This operation defines the mappingM2.

Dynamic load balancing is employed with adjustable frequency to keep the number of par-
ticles on each processor approximately equal. A density function is defined to find the local
computational domain boundary so that the number of particles on each processor is roughly
balanced. This number depends on the local integration of the charge density on each proces-
sor. To determine the local boundary, first the three-dimensional charge density is summed
up along thex direction on each processor to obtain a two-dimensional density function.
This function is distributed locally among all processors. Then, the two-dimensional density
function is summed up along they direction to get the local one-dimensional charge density
function alongz. This density function is broadcast to the processors along they direction.
The local charge density function is gathered alongz and broadcast to processors along the
zdirection to get a globalzdirection charge density distribution function on each processor.
Using this globalz direction density distribution, the local computational boundary in the
z dimension can be determined assuming that each processor contains a fraction of the
total number of particles about equal to 1/nprocz. Here, nprocz is the number of processors
along thez direction in the two-dimensional Cartesian processor grid. A similar process is
used to determine the local computational boundary in they direction. Strictly speaking,
the above algorithm will work correctly for a two-dimensional density distribution function
which can be separated as a product of two one-dimensional functions along each direction.
However, from our experience, this algorithm works reasonably well for the distributions
generally produced in beam dynamics simulations in a linear accelerator.

IV. OBJECT-ORIENTED SOFTWARE DESIGN

The above parallel particle-in-cell algorithm is implemented in an object-oriented frame-
work for accelerator simulation. Object-oriented software design is a method of design
encompassing the process of object-oriented decomposition [32]. The complex physical
system is analyzed and then decomposed into simpler physical modules. Next, objects are
identified inside each module, and classes are abstracted from these objects. Each class has
interfaces to communicate with the outside environment. Relationships are then built up
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among different classes and objects. These classes and objects are implemented in a con-
crete language representation. The implemented classes and objects are tested separately
and then put into the physical module. Each module is tested separately before it is assem-
bled into the whole program. Finally, the whole program is tested to meet the requirements
of the problem.

Our application of this object-oriented design methodology to beam dynamics studies in
accelerators results in the decomposition of the physical system into five parts. The first part
handles the particle information and consists of theBeam, BeamBC(i.e, beam boundary
condition), andDistribution classes. The second part handles information regarding quan-
tities defined on the field grid and consists of theField andFieldBCclasses. The third part
handles the external focusing and accelerating elements and consists of theBeamLineElem
base class and its derived classes, theDrift Tubeclass, theQuadrupoleclasses, and theRF
gapclass. The fourth part handles the computational domain geometry and consists of the
Geometryclass. The last part provides auxiliary and low-level classes to handle explicit com-
munication and input–output containing thePgrid2d, Communication, Utility , InOut, and
Timerclasses. The class diagram of the object-oriented model for a beam dynamics system
is presented in Fig. 2. Here, run-time polymorphism is used to implement different external
beamline elements. A single operation using the function of the beamline-element base class
can automatically select the appropriate function from different concrete beamline-element
class objects to execute. TheInheritancerelation in Fig. 2 defines an “is” relationship among
classes. TheAggregationdefines the relation that a class has an object of another class as
one of its data members. TheUsedefines a relation that a class uses an object of another
class in one or more member functions. The above object-oriented design is implemented
using Fortran 90 (F90). Even though F90 does not provide explicit language support for
some object-oriented programming features like inheritance and polymorphism, these fea-
tures can be emulated using user-defined data types, pointers, and modules in F90. The
inheritance of data members can be implemented by including exactly one instance of the
base class data member in a derived class. The inheritance of methods can be implemented

FIG. 2. Class diagram of accelerator beam dynamics system.
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by delegating to the base class the responsibility of carrying out the operation on the base
class component of the derived class object. The polymorphism can be implemented by
constructing a pointer object that can point to any member in an inheritance hierarchy and a
dispatch mechanism that can select the appropriate procedure to execute based on the actual
class referenced in the pointer object. More detailed discussions about expressing object-
oriented concepts in F90 can be found in Refs. [33, 34]. Some important class interfaces
of accelerator beam dynamics systems have been discussed in another publication [35]. A
similar code was also developed using the POOMA C++ framework [36]. In this paper, we
only show the simulation results using the F90/MPI code.

V. PERFORMANCE TEST

The performance of the object-oriented code was tested on both the SGI/Cray T3E-900
and the SGI Origin 2000. The SGI/Cray T3E-900 is a scalable, logically shared, physi-
cally distributed multiprocessor machine with a range of configurations up to thousands
of processors [37]. Each node consists of a DEC Alpha 64-bit RISC microprocessor, local
memory, system control chip, and some network interfaces. The RISC microprocessor is
cache-based, has pipelined functional units, and issues multiple instructions per cycle. The
clock speed is 450 MHz. Each node has its own local DRAM memory with a capacity of from
64 megabytes (MB) to 2 gigabytes (GB). A shared, high-performance, globally addressable
memory subsystem makes these memories accessible to every node. There are two-level
on-chip caches which can only be cached by local memory: one with 8 KB instruction and
data caches and another with 96 KB three-way associative cache. The nodes are connected
by a high-bandwidth, low-latency bidirectional 3-D torus interconnect network system.

The SGI Origin 2000 is a scalable, distributed shared-memory multiprocessor machine.
It consists of a number of processing nodes linked together by a multidimensional intercon-
nection fabric. Each processing node contains either one or two processors and a portion of
shared memory, which is physically distributed locally to each node but is also accessible
to all other processors through the interconnection fabric. Each node also contains a direc-
tory for cache coherence and two interfaces to connect to I/O devices and to link system
nodes through the interconnection fabric. The processor used in the SGI Origin 2000 is the
MIPS R10000, a high-performance 64-bit superscalar processor with up to 4 GB memory,
32 KB on-chip data cache, 32 KB on-chip instruction cache, and 4 MB secondary cache.
The single-node clock speed for the system we used is 250 MHz. A cabinet can consist of
up to 128 processor nodes [38].

The effect of dynamic load balancing is exhibited in Fig. 3. It shows the largest and
smallest number of particles on one processor, as a function of time, with and without
dynamic load balancing, on 16 processors. The total number of simulated particles is 2
million with a 64× 64× 64 grid. We see here that with dynamic load balancing the dif-
ference between the maximum number of particles and the minimum number of particles
has been drastically reduced. This demonstrates that the dynamic load balancing algorithm
described above works well. Here, we have done dynamic load balancing every time step.
The overhead associated with the dynamic load balancing operations is about 10% to 20%
of the total time. This depends on the dynamics of the physical problem and on the shape
of the resulting beam density and its distribution among processors. Typically, we call one
dynamic load balancing every five steps.
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FIG. 3. The maximum and minimum numbers of particles on one processor without and with dynamic load
balance.

In Fig. 4, we give a comparison of the execution time on the Cray T3E as a function of
the number of processors using one-dimensional and two-dimensional parallel processor
partitions. In this simulation, we have used 2.6 million particles and a 64× 64× 64 grid. The
two-dimensional partition shows better scalability and is faster than the one-dimensional
partition because a two-dimensional processor partition has a more favorable surface-to-
volume ratio. Communication cost is proportional to the surface area of the subdomain,
whereas computation is proportional to its volume.

Fig. 5 shows the execution time as a function of the processor number on the SGI/Cray
T3E-900 and on the SGI Origin 2000 for the same problem as in Fig. 4. Good scalability

FIG. 4. The time cost as a function of the number of processors on the Cray T3E using one-dimensional and
two-dimensional parallel partitions.
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FIG. 5. The time cost as a function of the number of processors on the Cray T3E and the SGI Origin 2000.

of our object-oriented parallel PIC code has been achieved. The general performance of
our code on the Origin and T3E machines beyond four processors is nearly identical. This
coincidence may be due to the slower CPU speed but larger cache size of the Origin machine
than that of the T3E. Another factor that could contribute to this is that the code runs as
single precision on the SGI machine but will run as double precision on the T3E machine
by default.

To see how well this code will scale for larger problem sizes, Fig. 6 shows, for the SGI
machine, the speedup normalized by the time on four processors as a function of the number
of processors, with three different problem sizes. Here, the number of simulation particles

FIG. 6. The speedup as a function of the number of processors on the SGI Origin 2000 with different problem
sizes.
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TABLE I

Physical Parameters in the APT Design

Energy gain 211.4–1.03 GeV
Beam current 0.1 A
Accelerator length 513.58 m (includes three sections)
Quadrupole gradient 5.60–5.10, 5.50–6.05, 5.00–7.25 T/m
Accelerating gradient 4.30–4.54, 4.30–5.01, 5.246 MV/m
Synchronous phase −30◦ to−35◦,−30◦ to−42◦,−30◦

used per grid point is fixed as 10 for all three cases. It is seen that with increasing problem
size, the speedup also increases. This example shows that the code is more efficient with
larger problem sizes.

VI. APPLICATION

As an application, we simulated beam transport through three superconducting sections
in a design of the APT linac [39]. The first section accelerates the beam from 211.4 to
242.0 MeV and contains six 2-cavity cryomodules. The second section accelerates the
beam from 242.0 to 471.40 MeV and contains thirty 3-cavity cryomodules. The third
section accelerates the beam to 1.03 GeV and contains thirty-five 4-cavity cryomodules.
The major physical parameters in the design are listed in Table 1.

The external focusing and accelerating fields for the first two cryomodules are given in
Fig. 7. A quadrupole doublet focusing lattice is used to provide transverse strong focusing
and to reduce the focusing period compared with that for a singlet lattice. The external lon-
gitudinal RF field is obtained from a MAFIA [40] calculation of the 5-cell superconducting
cavity. For the above physical parameters and external field, we performed the simulation
using 20 million simulation particles on a 128× 128× 128 grid. The initial distribution

FIG. 7. The external focusing and accelerating field in the superconducting linac.
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FIG. 8. The transverse rms size and maximum amplitudes of the beam as functions of its kinetic energy.

used here is a six-dimensional Gaussian distribution in phase space. Figure 8 gives the
transverse rms beam size and maximum amplitudes as a function of kinetic energy of the
beam. A jump in transverse rms beam size around 480 MeV is due to the jump in external
focusing between the second section and the third section. The maximum transverse ampli-
tudes determine the minimum aperture that can be used without particles striking the beam
pipe. Figure 9 shows the longitudinal phase space plot at the end of the linac. The spiral
structure suggests the formation of a beam halo due to the mismatched focusing which can
be understood using a particle-core model [3]. Particles in the beam halo will be lost if they
move to large amplitude and strike the beam pipe. The resulting radioactivity is a major

FIG. 9. The longitudinal phase space plots at the end of the linac.
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issue for high current machines because it affects the safety, reliability, and availability of
the accelerator.

VII. CONCLUSIONS

In this paper, we have presented an object-oriented three-dimensional parallel particle-in-
cell program for beam dynamics simulation in linear accelerators. This program employs a
domain decomposition method with MPI. A dynamic load balance scheme is implemented in
the code. The use of object-oriented techniques results in better maintainability, reusability,
and extensibility compared with a conventional structure-based approach. Performance tests
on the SGI/Cray T3E-900 and the SGI Origin 2000 showed good scalability. This code was
successfully applied to the simulation of beam transport through three superconducting
sections in the APT linac.
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