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The space-charge driven envelope instability can be of great danger in high intensity accelerators and
was studied using a two-dimensional (2D) envelope model and three-dimensional (3D) macroparticle
simulations before. In this paper, we study the instability for a bunched beam using a three-dimensional
envelope model in a periodic solenoid and radio-frequency (rf) focusing channel and a periodic quadrupole
and rf focusing channel. This study shows that when the transverse zero current phase advance is below 90°,
the beam envelope can still become unstable if the longitudinal zero current phase advance is beyond 90°.
For the transverse zero current phase advance beyond 90°, the instability stopband width becomes larger
with the increase of the longitudinal focusing strength and even shows different structure from the 2D case
when the longitudinal zero current phase advance is beyond 90°. Breaking the symmetry of two
longitudinal focusing rf cavities and the symmetry between the horizontal focusing and the vertical
focusing in the transverse plane in the periodic quadrupole and rf channel makes the instability stopband
broader. This suggests that a more symmetric accelerator lattice design might help reduce the range of the
envelope instability in parameter space.

DOI: 10.1103/PhysRevAccelBeams.21.034201

I. INTRODUCTION

The envelope instability as a space-charge driven collec-
tive instability presents a potentially great danger in high
intensity accelerators by causing beam size blow up and
quality degradation. It has been studied theoretically [1–8]
and experimentally [9–11] since the 1980s. In recent years,
there was growing interest in further understanding this
instability and other structural resonances [12–22]. Some of
those studies were summarized in a recently published
monograph [23]. However, most of those theoretical studies
were based on a two-dimensional model. Three-dimensional
macroparticle simulations were carried out for a bunched
beam under the guidance of the two-dimensional envelope
instability model [16,19]. It was found in Ref. [16] that the
instability stopband from the 3D macroparticle simulation is
broader than that from the 2D envelope model. Furthermore,
the effect of the longitudinal synchrotron motion has not
been systematically studied in those macroparticle simula-
tions and is missed in the 2D envelope instability model.
In this paper, we studied the envelope instability for a
bunched beam using a set of three-dimensional envelope
equations in periodic focusing channels. This analysis can be

used to systematically study the effect of longitudinal
synchrotronmotion on the instability stopband for a bunched
beam. It can also be used to explore the stability in a fully 3D
parameter space and to provide guidance for 3D macro-
particle simulations.
The organization of this paper is as follows: after the

introduction, we review the 2D envelope instability model
in Sec. II; we present the 3D envelope instability model
in Sec. III; we present numerical study of the envelope
instability in a periodic transverse solenoid and longitudinal
rf focusing channel in Sec. IV; I present numerical study of
the envelope instability in a periodic transverse quadrupole
and longitudinal rf focusing channel in Sec. V; and draw
conclusions in Sec. VI.

II. TWO-DIMENSIONAL ENVELOPE
INSTABILITY MODEL

For a two-dimensional coasting beam subject to external
periodic focusing forces and linear space-charge forces, the
two-dimensional envelope equations for the transverse rms
sizes as functions of the distance s along the axis of the
accelerator are given as [2,24]:

d2X
ds2

þ k2xðsÞX −
K=2
X þ Y

−
ϵ2x
X3

¼ 0 ð1Þ

d2Y
ds2

þ k2yðsÞY −
K=2
X þ Y

−
ϵ2y
Y3

¼ 0 ð2Þ

where X and Y are horizontal and vertical rms beam sizes
respectively, k2x and k2y represent the external periodic
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focusing forces (kxðsÞ ¼ kyðsÞ ¼ qBðsÞ=ð2p0Þ for sole-
noids and k2x;yðsÞ ¼ �qGðsÞ=p0 for quadrupoles, where B
is the solenoid root mean-squared magnetic field along
the axis and G is the quadrupole gradient), ϵx and ϵy
denote unnormalized rms emittances, and K is the gener-
alized perveance associated with the space-charge strength
given by:

K ¼ qI
2πϵ0p0v20γ

2
0

ð3Þ

where I is the current of the beam, q is the charge of the
particle, ϵ0 is the vacuum permittivity, p0 is the momentum
of the reference particle, v0 is the speed of the reference
particle, and γ0 is the relativistic factor of the reference
particle.
The above equations can be linearized with respect to a

periodic solution (i.e. matched solution) as:

XðsÞ ¼ X0ðsÞ þ xðsÞ ð4Þ

YðsÞ ¼ Y0ðsÞ þ yðsÞ ð5Þ

where X0 and Y0 denote the periodic matched envelope
solutions [X0ðsÞ¼X0ðsþLÞ, X0

0ðsÞ ¼ X0
0ðsþ LÞ, Y0ðsÞ¼

Y0ðsþLÞ, and Y 0
0ðsÞ ¼ Y 0

0ðsþ LÞ] that can be found
through the Newton search algorithm with a contraction
map [25], and x and y denote small perturbations

xðsÞ ≪ X0ðsÞ; yðsÞ ≪ Y0ðsÞ ð6Þ

The match solutions are available as long as the zero
current phase advances are below 180°.
The equations of motion for the small perturbations are

given by:

d2xðsÞ
ds2

þ a1ðsÞxðsÞ þ a12ðsÞyðsÞ ¼ 0 ð7Þ

d2yðsÞ
ds2

þ a2ðsÞyðsÞ þ a12ðsÞxðsÞ ¼ 0 ð8Þ

where

a12ðsÞ ¼ 2K=ðX0ðsÞ þ Y0ðsÞÞ2 ð9Þ

a1ðsÞ ¼ k2xðsÞ þ 3ϵ2x=X4
0ðsÞ þ a12ðsÞ ð10Þ

a2ðsÞ ¼ k2yðsÞ þ 3ϵ2y=Y4
0ðsÞ þ a12ðsÞ ð11Þ

With ξ ¼ ðx; x0; y; y0ÞT , the prime denotes derivative with
respect to s, and T denotes the transpose of a matrix, the
above equations can be rewritten in matrix notation as:

dξ
ds

¼ A4ðsÞξðsÞ ð12Þ

with the periodic matrix

A4ðsÞ ¼

0
BBB@

0 1 0 0

−a1ðsÞ 0 −a12ðsÞ 0

0 0 0 1

−a12ðsÞ 0 −a2ðsÞ 0

1
CCCA ð13Þ

Let ξðsÞ ¼ M4ðsÞξð0Þ be the solution of above equation,
substituting this equation into Eq. (12) results in

dM4ðsÞ
ds

¼ A4ðsÞM4ðsÞ ð14Þ

where M4ðsÞ denotes the 4 × 4 transfer matrix solution of
ξðsÞ andM4ð0Þ is a 4 × 4 unit matrix. The matrix A4ðsÞ is a
periodic function of s with a length of period L. Following
the Floquet’s theorem, the solution of M4ðsÞ after n lattice
periods can be written as

M4ðsþ nLÞ ¼ M4ðsÞM4ðLÞn ð15Þ

This matrix solution will remain finite as n− > ∞, only if
all amplitudes of the eigenvalues of the matrix M4ðLÞ be
less than or equal to one. Since the matrix M4ðLÞ is a real
symplectic matrix, the eigenvalues of the matrix occur both
as reciprocal and as complex-conjugate pairs. Therefore,
for stable solutions, all eigenvalues of the matrix M4ðLÞ
have to lie on a unit circle in the complex plane. The
eigenvalues of the matrix M4ðLÞ can be expressed in polar
coordinates as:

λ ¼ jλj exp ðiϕÞ ð16Þ

where the amplitude jλj of the eigenvalue gives the growth
rate (or damping rate) of the envelope eigenmode through
one lattice period and the phase shift ϕ of the eigenvalue
gives the phase of the envelope mode oscillation through
one period. For an unstable envelope mode, there are
two possibilities [2]: (1) one or both eigenvalue pairs lie on
the real axis: ϕ1;2 ¼ 180°, (2) the phase shift angles are
equal: ϕ1 ¼ ϕ2. The first case can be seen as a half-integer
parametric resonance between the focusing lattice and the
envelope oscillation mode. The second case is a confluent
resonance between two envelope oscillation modes since
they have the same oscillation frequencies.

III. THREE-DIMENSIONAL ENVELOPE
INSTABILITY MODEL

The 3D envelope equations have been used to study the
halo particle formation mechanism (e.g., particle-core
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model) for a bunched beam in high intensity accelerators
[26–29]. There, the mismatched envelope oscillation res-
onates with a test particle and drives the particle into large
amplitude becoming a halo particle. The mismatched
envelope oscillation itself is stable in that case. In this
paper, I study the stability/instability of the mismatched
envelope oscillation itself in periodic focusing channels.
For a 3D uniform density ellipsoidal beam inside a

periodic focusing channel without acceleration, the three-
dimensional envelope equations are given as [25,30]:

d2X
ds2

þ k2xðsÞX − IxðX; Y; ZÞX −
ϵ2x
X3

¼ 0 ð17Þ

d2Y
ds2

þ k2yðsÞY − IyðX; Y; ZÞY −
ϵ2y
Y3

¼ 0 ð18Þ

d2Z
ds2

þ k2zðsÞZ − IzðX; Y; ZÞZ −
ðϵz=γ2Þ2

Z3
¼ 0 ð19Þ

with

IiðX; Y; ZÞ ¼ C
Z

∞

0

dt

ðe2i þ tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX2 þ tÞðY2 þ tÞðγ2Z2 þ tÞ

p
ð20Þ

where X, Y, and Z are horizontal, vertical, and longitudinal
rms beam sizes respectively, k2x, k2y, k2z represent the external
periodic focusing forces (k2z ¼ ωqE0T sinð−ϕsÞ=ðmc2β3γ3Þ
for longitudinal rf focusing [31]), ϵx, ϵy, and ϵz are unnor-
malized rms emittances, ei ¼ X; Y; γZ, for i ¼ x, y, z, and
C ¼ 1

2
3

4πϵ0

q
mc2

I
frfβ2γ2

1

5
ffiffi
5

p . Here, ϵ0 is the vacuum permittivity,

q the charge, mc2 the rest energy of the particle, c the light
speed invacuum, I the average beam current,frf the rf bunch
frequency, β ¼ v=c, v the bunch velocity, and the relativistic
factor γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
. The nonlinear space-charge defocus-

ing terms Ix;y;z depend on the horizontal, vertical, and
longitudinal rms beam sizes and provide coupling between
the transverse and longitudinal envelope oscillations. The
above 3D envelope equations can be derived from the
definition of rms size and equations of motion in each
dimension as shown in [30]. A detailed derivation of
those equations including the 3D space-charge fields for a
bunched beamwith the ellipsoidal symmetry (ρðx; y; z; sÞ ¼
ρðx2=a2 þ y2=b2 þ z2=c2; sÞ) is given in the Appendix of
Ref. [32]. Itwas pointed out inRef. [30] that the space-charge
form factor 1=5

ffiffiffi
5

p
for a uniform distribution depends only

weakly on the type of distributions and is 1.01=5
ffiffiffi
5

p
for a

parabolic distribution and 1.05=5
ffiffiffi
5

p
for a Gaussian distri-

bution. The external periodic focusing forces kx;y;zðsÞ ¼
kx;y;zðsþ LÞ in above equations vary for different accelerator
beam line elements. This envelope model is valid for a
periodic accelerator transport channel no matter the external

transverse focusing elements in a single period having a
focusing drift defocusing drift (FODO) or a focusing drift
focusing drift defocusing drift defocusing drift (FOFO-
DODO) structure.
The above equations can be linearized with respect to

periodic solutions (i.e. matched solutions) as:

XðsÞ ¼ X0ðsÞ þ xðsÞ ð21Þ

YðsÞ ¼ Y0ðsÞ þ yðsÞ ð22Þ

ZðsÞ ¼ Z0ðsÞ þ zðsÞ ð23Þ

where X0, Y0, and Z0 denote the periodic matched envelope
solutions and x, y, and z denote small perturbations

xðsÞ ≪ X0ðsÞ; yðsÞ ≪ Y0ðsÞ; zðsÞ ≪ Z0ðsÞ:
ð24Þ

The equations of motion for these small perturbations are
given by:

d2x
ds2

þ a1ðsÞxðsÞ þ a12ðsÞyðsÞ þ γ2a13ðsÞzðsÞ ¼ 0 ð25Þ

d2y
ds2

þ a12ðsÞxðsÞ þ a2ðsÞyðsÞ þ γ2a23ðsÞzðsÞ ¼ 0 ð26Þ

d2z
ds2

þ a13ðsÞxðsÞ þ a23ðsÞyðsÞ þ a3ðsÞzðsÞ ¼ 0 ð27Þ

where

a1ðsÞ ¼ k2x þ 3ϵ2x=X4
0 − IxðX0; Y0; Z0Þ þ 3X2

0Fxx ð28Þ

a12ðsÞ ¼ X0Y0Fxy ð29Þ

a13ðsÞ ¼ X0Z0Fxz ð30Þ

a2ðsÞ ¼ k2y þ 3ϵ2y=Y4
0 − IyðX0; Y0; Z0Þ þ 3Y2

0Fyy ð31Þ

a23ðsÞ ¼ Y0Z0Fyz ð32Þ

FIG. 1. Schematic plot of a periodic solenoid and rf channel.
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FIG. 2. The 3D envelope mode growth rate amplitudes as a function of depressed transverse phase advance with 20°, 40°, 60°, 80°,
100°, 120°, and 140° zero current longitudinal phase advances for (a) 80°, (b) 100°, (c) 120°, and (d) 140° zero current transverse phase
advances in a periodic solenoid-rf channel.
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a3ðsÞ ¼ k2z þ 3ðϵz=γ2Þ2=Z4
0 − IzðX0; Y0; Z0Þ þ 3γ2Z2

0Fzz

ð33Þ

where

Fxx ¼ C
Z

∞

0

ðX2
0 þ tÞ−5=2ðY2

0 þ tÞ−1=2ðZ2
0γ

2 þ tÞ−1=2dt

ð34Þ

Fxy ¼ C
Z

∞

0

ðX2
0 þ tÞ−3=2ðY2

0 þ tÞ−3=2ðZ2
0γ

2 þ tÞ−1=2dt

ð35Þ

Fxz ¼ C
Z

∞

0

ðX2
0 þ tÞ−3=2ðY2

0 þ tÞ−1=2ðZ2
0γ

2 þ tÞ−3=2dt

ð36Þ

Fyy ¼ C
Z

∞

0

ðX2
0 þ tÞ−1=2ðY2

0 þ tÞ−5=2ðZ2
0γ

2 þ tÞ−1=2dt

ð37Þ

Fyz ¼ C
Z

∞

0

ðX2
0 þ tÞ−1=2ðY2

0 þ tÞ−3=2ðZ2
0γ

2 þ tÞ−3=2dt

ð38Þ

Fzz ¼ C
Z

∞

0

ðX2
0 þ tÞ−1=2ðY2

0 þ tÞ−1=2ðZ2
0γ

2 þ tÞ−5=2dt:

ð39Þ
With ξ ¼ ðx; x0; y; y0; z; z0ÞT , the above equations can be

rewritten in matrix notation as:

dξ
ds

¼ A6ðsÞξðsÞ ð40Þ

with the periodic matrix

A6ðsÞ ¼

0
BBBBBBBBB@

0 1 0 0 0 0

−a1ðsÞ 0 −a12ðsÞ 0 −γ2a13ðsÞ 0

0 0 0 1 0 0

−a12ðsÞ 0 −a2ðsÞ 0 −γ2a23ðsÞ 0

0 0 0 0 0 1

−a13ðsÞ 0 −a23ðsÞ 0 −a3ðsÞ 0

1
CCCCCCCCCA

ð41Þ
Let ξðsÞ ¼ M6ðsÞξð0Þ, substituting this equation into
Eq. (40) results in

dM6ðsÞ
ds

¼ A6ðsÞM6ðsÞ ð42Þ

FIG. 3. The 3D envelope mode phases as a function of depressed transverse phase advance with (a) 80°, (b) 100°, (c) 120°, and (d) 140°
zero current longitudinal and transverse phase advances in a periodic solenoid-rf channel. The six colors are the phases of the six
eigenvalues.
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where M6ðsÞ denotes the 6 × 6 transfer matrix solution of
ξðsÞ and M6ð0Þ is a 6 × 6 unit matrix. The above ordinary
differential equation can be solved using the matched
envelope solutions and numerical integration. Similar to
the 2D envelope instability model, the stability of these
envelope perturbations is determined by the eigenvalues of
the transfer matrix M6ðLÞ through one lattice period. For
the envelope oscillation to be stable, all six eigenvalues
(three pairs) of the M6ðLÞ have to stay on the unit circle.
The amplitude of the eigenvalue gives the envelope mode
growth (or damping) rate through one lattice period, while
the phase of the eigenvalue yields the mode oscillation
frequency. When the amplitude of any eigenvalue is greater
than one, the envelope oscillation becomes unstable.

IV. ENVELOPE INSTABILITY IN A PERIODIC
SOLENOID AND RF CHANNEL

I first studied the envelope instability in a transverse
solenoid focusing and longitudinal rf focusing periodic
channel. A schematic plot of this periodic channel is shown
in Fig. 1. Each period of the channel consists of a 0.2 m
solenoid and a 0.1 m rf bunching cavity. The total length of
the period is 0.5 m. The proton bunch has a kinetic energy of
150MeVand normalized rms emittances of 0.2 μm, 0.2 μm,
and 0.2 μm in horizontal, vertical, and longitudinal direc-
tions respectively. Figures 2 and 3 show the 3D envelope

mode growth rate amplitudes (jλj) and phases (ϕ) as a
function of transverse depressed phase advance for different
zero current transverse and longitudinal phase advances.As a
comparison, we also show in Figs. 4 and 5 the 2D envelope
mode growth rate amplitudes and phases as a function of
depressed transverse phase advance for the same zero current
transverse phase advances. Here, the 2D periodic solenoid
channel has the same length of period as the 3D channel. It is
seen that in the 2D periodic solenoid channel, the envelope
instability occurswhen the zero current phase advance is over
90°. In the 3D periodic solenoid-rf channel, the envelope
instability occurs even with the zero current transverse phase
advance 80° but longitudinal phase advance beyond 90° as
shown in Fig. 2(a2). There is no instability if both the
transverse zero current phase advance and the longitudinal
zero current phase advance are below 90° as seen in
Fig. 2(a1). For the 3Denvelopemodes,when the longitudinal
zero current phase advance below 90° and the transverse zero
current phase above 90° as shown in Figs 2(b1), 2(c1), and
2(d1), the instability stopband becomes broader as the zero
current longitudinal phase advance increases. This is prob-
ably because the longitudinal synchrotronmotion helpsbring
particles with different depressed transverse tunes into the
resonance. A faster synchrotron motion results in more
particles falling into the resonance and hence a broader
instability stopband. For small longitudinal zero current

FIG. 4. The 2D envelope mode growth rate amplitudes as a function of depressed transverse phase advance for (a) 80°, (b) 100°,
(c) 120°, and (d) 140° zero current transverse phase advances in a periodic solenoid channel.
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phase advance (e.g., 20°), the 3D envelope mode show the
stopband similar to that of the 2D envelope mode. When the
longitudinal zero current phase advance is above 90°, as
shown in Figs. 2(b2), 2(c2), and 2(d2), the 3D envelope
instability shows more complicated structure and larger
instability stopband width than the 2D envelope instability.
In the 2D periodic transverse solenoid focusing channel,

for a coasting beam with equal horizontal and vertical

FIG. 5. The 2D envelope mode phases as a function of depressed transverse phase advance for (a) 80°, (b) 100°, (c) 120°, and (d) 140°
zero current transverse phase advances in a periodic solenoid channel. The four colors are the phases of the four eigenvalues.

FIG. 6. The 3D envelope mode phases as a function of the depressed transverse phase advance for zero current (a) transverse 80° and
longitudinal 120°, (b) transverse 120° and longitudinal 80° phase advance in a periodic solenoid channel. The six colors are the phases of
the six eigenvalues.

FIG. 7. Schematic plot of a periodic quadrupole and rf channel.
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FIG. 8. The 3D envelope mode growth rate amplitudes as a function of depressed transverse phase advance with 20°, 40°, 60°, 80°,
100°, 120°, and 140° zero current longitudinal phase advances for (a) 80°, (b) 100°, (c) 120°, and (d) 140° zero current transverse phase
advances in a periodic quadrupole-rf channel.
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emittances, it is seen in Fig. 5, the envelope instabilities
are due to the 180° half-integer parametric resonance.
However, for a bunched beam, as shown in Fig. 3, besides
the 180° half-integer resonance, there are also confluent
resonances where two envelope modes have the same
frequencies and resonate with each other. The existence
of both instability mechanisms results in more complicated
structure as shown in Figs. 2(b2), 2(c2), and 2(d2).
The 3D envelope instability shows asymmetry between

the transverse direction and the longitudinal direction
in the 3D periodic solenoid and rf channel. Figure 6
shows the envelope mode phases as a function of
depressed transverse phase advance for a case with zero
current 80° transverse phase advance and 120° longi-
tudinal phase advance, and a case with zero current 120°
transverse phase advance and 80° longitudinal phase
advance. The envelope mode growth rate amplitudes
for both cases are shown in Figs. 2(a2) and 2(c1). For
the 80° zero current transverse phase advance, there is
only one major unstable stopband below 30° depressed
transverse phase advance due to half-integer parametric
resonance as shown in the left plot of Fig. 6. For the 120°
zero current transverse phase advance, there are three
unstable regions, two due to the half-integer parameter
resonance and one due to the confluent resonance as
shown in the right plot of Fig. 6. This asymmetry is

related to the two degrees of freedom in the transverse
plane while only one in the longitudinal direction.

V. ENVELOPE INSTABILITY IN A PERIODIC
QUADRUPOLE-RF CHANNEL

Next, we studied the 3D envelope instability in a periodic
transverse quadrupole focusing and longitudinal rf focusing
channel for the same bunched proton beam. A schematic
plot of this periodic channel is shown in Fig. 7. Each peroid
of the channel consists of a 0.2 m focusing quadrupole, a
0.1 m rf focusing cavity, a 0.2 m defocusing quadrupole,
and another 0.1 m rf bunching cavity. The total length of
the period is 1.0 m. Figures 8 and 9 show the 3D envelope
mode growth rate amplitudes and phases as a function
of transverse depressed phase advance for different zero
current transverse and longitudinal phase advances. As a
comparison, we also show in Figs 10 and 11 the 2D
envelope mode growth rate amplitudes and phases as a
function of the depressed phase advance for different zero
current phase advances. Here, the 2D periodic quadrupole
channel has the same length of period as the 3D channel.
It is seen that in the 2D periodic quadrupole channel,
the envelope instability occurs when the zero current
phase advance is over 90°. There is no instability when
the zero current phase advance is below 90°. In the 3D

FIG. 9. The 3D envelope mode phases as a function of depressed transverse phase advance with (a) 80°, (b) 100°, (c) 120°, and (d) 140°
zero current longitudinal and transverse phase advances in a periodic quadrupole-rf channel. The six colors are the phases of the six
eigenvalues.
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periodic quadrupole-rf channel, the envelope instability
occurs even with the zero current transverse phase advance
80° but the longitudinal phase advance beyond 100° in
Fig. 8(a2). There is no instability if both the transverse
zero current phase advance and the longitudinal zero
current phase advance are below 90°. For the 3D envelope
modes, when the longitudinal zero current phase advance is
below 90° and the transverse zero current phase above 90°
as shown in Figs. 8(b1), 8(c1), and 8(d1), the instability
stopband width increases with the increase of the zero
current longitudinal phase advance. For small longitudinal
zero current phase advance (e.g., 20°), the 3D envelope
modes instability stopband is similar to that of the 2D
envelope modes. For the 100° zero current transverse
phase advance case, when the zero current longitudinal
phase advance is beyond 90°, the stopband becomes more
complicated and shows multiple stopbands. For the trans-
verse zero current 120° and 140° phase advances, the
instability stopbands do not change significantly with the
increase of zero current longitudinal phase advance. This is
due to the fact that when the transverse zero current phase
advance is beyond 100°, most parameter space (transverse
depressed tune) below 90° becomes unstable caused by the
confluent resonance. Further increasing the zero current
longitudinal phase advance beyond 90° will not enlarge that
stopband any more.

In the periodic transverse quadrupole focusing channel,
it is seen in Fig. 11, the 2D envelope instabilities are mainly
due to the confluent resonance between the two envelope
modes when their phases become equal. This appears still
to be valid in the 3D periodic quadrupole-rf channel as
shown in Fig. 9.
The 3D envelope instability shows asymmetry between

the transverse and the longitudinal direction in the 3D
periodic quadrupole and rf channel too. Figure 12 shows
the envelope mode phases as a function of depressed
transverse phase advance for a case with zero current
80° transverse phase advance and 120° longitudinal phase
advance, and a case with zero current 120° transverse phase
advance and 80° longitudinal phase advance. The envelope
mode amplitudes are shown in Figs. 8(a2) and 8(c1) for this
comparison. For the 80° zero current transverse phase
advance, there is only one major unstable region around
60° depressed transverse phase advance due to the con-
fluent resonance. For the 120° zero current phase advance,
there are two unstable regions due to two confluent
resonances.
In the above periodic quadrupole and rf channel, we

assumed that the two rf cavities have the same longitudinal
focusing strength. The longitudinal focusing period is half
of the transverse focusing period. This accounts for the
absence of the envelope instability for the zero current 80°

FIG. 10. The 2D envelope mode growth rate amplitudes as a function of depressed transverse phase advance for (a) 80°, (b) 100°,
(c) 120°, and (d) 140° zero current transverse phase advances in a periodic quadrupole channel.
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transverse phase advance and 100° longitudinal phase in the
periodic quadrupole and rf channel. The envelope insta-
bility stopband is observed in the periodic solenoid and
rf channel with the same zero current phase advances as
shown in Fig. 2(a2). The absence of instability for
longitudinal zero current phase advance 100° was also
observed in 3D macroparticle simulations in Ref. [22].
Now, we break the symmetry of two rf longitudinal focusing

cavities, the longitudinal focusing period becomes the same
as the transverse focusing period. The envelope instability
occurs for these zero current phase advances in a periodic
quadrupole and rf channel. Figure 13 show the envelope
mode growth rate amplitudes and phases as a function of
transverse depressed phase advances with about 10%, 20%,
and 30% deviation from the original setting of the two rf
cavities (one cavity plus that percentage and the other one

FIG. 11. The 2D envelope mode phases as a function of depressed transverse phase advance for (a) 80°, (b) 100°, (c) 120°, and (d) 140°
zero current transverse phase advances in a periodic quadrupole channel. The four colors are the phases of the four eigenvalues.

FIG. 12. The 3D envelope mode phases as a function of depressed transverse phase advance for zero current (a) transverse 80° and
longitudinal 120°, (b) transverse 120° and longitudinal 80° phase advance in a periodic quadrupole channel. The six colors are the phases
of the six eigenvalues.
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minus that percentage). It is seen that as the asymmetry
between the two rf cavity increases, the instability stopband
width also increases. Before breakingof the symmetry of two
rf cavities, the longitudinal phase advance per longitudinal
period is 50°. After the breaking of the symmetry, the
longitudinal period becomes the same as the lattice period
and the phase advance becomes 100°. Such a zero current

phase advance results in half integer parametric resonance as
shown in Fig. 13.
In above 3D periodic solenoid/quadrupole and rf trans-

port channels, I have assumed that in transverse plane, the
zero current phase advances in horizontal direction and
the vertical direction are the same. Furthermore, the bunch
has the same emittances in both horizontal and vertical

FIG. 13. The 3D envelope mode (left) growth rate amplitudes and (right) phases as a function of the transverse depressed phase
advance with 10%, 20%, and 30% deviations from the original rf cavity setting in a periodic quadrupole-rf channel. The six colors in the
right plot are the phases of the six eigenvalues.

FIG. 14. The 2D envelope mode (top) growth rate amplitudes and (bottom) phases as a function of depressed phase advance with
asymmetric zero current phase advances (80° in one direction and 120° in another direction) in a periodic quadrupole channel. The four
colors in the bottom plots are the phases of the four eigenvalues.
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directions. This implies a two-dimensional transverse and
longitudinal periodic system (i.e. r − z). As a comparison,
we also calculated the envelope mode growth rate ampli-
tudes and phases for a true two-dimensional periodic
quadrupole channel with different zero current phase
advances in the horizontal and the vertical direction
(120° in the horizontal direction and 80° in the vertical
direction). Figure 14 shows the 2D envelope mode growth
rate amplitudes and phases as a function of the depressed
horizontal and vertical phase advance. Comparing the 2D
envelope mode growth rate amplitudes and phases in above
plot with those of the 3D envelope mode with the same zero
current phase advances in Figs. 2(a2) and 8(a2) (80° in
transverse and 120° in longitudinal) andFigs. 2(c1) and 8(c1)
(120° in transverse and 80° in longitudinal), it is seen that
the 2Denvelope instability shows somewhat similar structure
to the 3D envelope instability in a periodic solenoid-rf
channel with transverse zero current phase advance 80°
and longitudinal phase advance 120°. The major instabilities
in both cases are caused by the half-integer parametric
resonance. The 3D envelope modes in a periodic quadru-
pole-rf channel shows quite different instability stopband
from the 2D envelope modes. Also the 3D envelope
instability in quadrupole channel is caused by the confluent
resonance while the 2D asymmetric envelope instability in
the quadrupole channel is mainly caused by the half-integer
parametric resonance.
I also explored 3D envelope instabilities with nonequal

transverse zero current phase advances in the horizontal
direction and the vertical direction. Figure 15 shows the
3D envelope mode amplitudes and phases as a function
of the depressed horizontal tune with zero current phase
advance 120° in the horizontal direction, 110° in the
vertical direction, and 80° in the longitudinal direction
in the periodic quadrupole and rf channel. Comparing the
above figure with the zero current 120° transverse phase
advance and 80° longitudinal phase advance case in
Fig. 8(c1), it is seen that 3D instability stopband from

the nonequal transverse focusing becomes broader.
Instead of one major instability stopband and a minor
stopband in the equal transverse phase advance case,
now there are four stopbands (two major stopbands and
two minor stopbands) for the transverse 120° and 110°
phase advances. Besides the confluent resonance, there
also appears a half-integer parametric resonance when the
transverse symmetry is broken. Breaking the transverse
symmetry results in more resonances of these envelope
modes. This suggests that keeping the same zero current
phase advance in both the horizontal and the vertical
directions might help reduce the parameter region of the
envelope instability.

VI. CONCLUSIONS

In this paper, we studied the envelope instability for a
bunched beam using a set of three-dimensional envelope
equations in a periodic solenoid and rf focusing channel
and a periodic quadrupole and rf focusing channel. This
study showed that when the transverse zero current phase
advance is below 90°, the beam envelope can still become
unstable if the longitudinal zero current phase advance is
beyond 90°. For the transverse zero current phase advance
beyond 90°, the instability stopband becomes broader
with the increase of longitudinal focusing strength and
even shows different structure from the 2D case when the
longitudinal zero current phase advance is beyond 90°.
The 3D envelope instability shows asymmetry between

the longitudinal focusing and the transverse focusing. The
instability shows broader stopband when the transverse
zero current phase advance is beyond 90° than that when
the longitudinal zero current phase advance is beyond 90°.
In the 3D periodic quadrupole and rf channel, for the
transverse zero current phase advance 80°, the envelope
modes stay stable for the longitudinal 100° zero current
phase advance due to the symmetry of two longitudinal
focusing rf cavities. Breaking the symmetry of two cavities

FIG. 15. The 3D envelope mode (left) growth rate amplitudes and (right) phases as a function of the horizontal depressed phase
advances with zero current phase advances 120° in horizontal, 110° in vertical, and 80° in longitudinal direction in a periodic
quadrupole-rf channel. The six colors in the right plot are the phases of the six eigenvalues.
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results in the envelope instability with a finite stopband.
Breaking the horizontal and vertical focusing symmetry in
the transverse plane also increases the envelope instability
stopband width. This suggests that a more symmetric
accelerator lattice design might help reduce the parameter
space of the envelope instability.
In this study, we used a transverse solenoid, longitudinal

rf focusing lattice and a transverse quadrupole, longitudinal
rf focusing lattice to illustrate the 3D envelope instability
of a bunched beam in periodic transport channels. This
model can be readily applied to the study of stability of
bunched beam transporting in other periodic focusing
lattice, e.g., a FOFO-DODO lattice. The above results will
still be valid qualitatively even though the exact width of
instability stopband can be different. This is because the
space-charge driven envelope instability depends more
on the zero-current phase advance per period and the
depressed phase advance per period with current than
the detailed layout of focusing elements. The dependence
of the instability stopband on accelerator lattice parameters
is not analytically available and can be explored numerically
in future study.
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