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A B S T R A C T

The long-term macroparticle tracking simulation is computationally challenging but needed in order to study
space-charge effects in high intensity circular accelerators. To address the challenge, in this paper, we proposed
using a fully symplectic particle-in-cell model for the long-term space-charge simulation. We analyzed the
artificial numerical emittance growth in the simulation and suggested using threshold numerical filtering in
frequency domain to mitigate the emittance growth in the simulation. We also explored alternative frozen space-
charge simulations and observed qualitative agreement with the self-consistent simulations.

1. Introduction

The nonlinear space-charge effects present strong limit on beam
intensity in high intensity/high brightness accelerators by causing
beam emittance growth, halo formation, and even particle loss. Self-
consistent macroparticle simulations have been widely used to study
these space-charge effects in the accelerator community [1–14]. In some
applications, especially in high intensity circular accelerators such as
a synchrotron, one has to track the beam for many turns. It becomes
computationally challenging for the long-term space charge tracking
simulation since on one hand, one needs to avoid numerical artifacts
and to ensure accuracy of the simulation results. On the other hand,
one would like to reduce the computing time in physics applications.

The charged particle motion inside an accelerator follows classical
Hamiltonian dynamics and satisfies the symplectic conditions. For better
accuracy, it is desirable to preserve the symplectic conditions in the
long-term numerical tracking simulation too. Violating the symplectic
conditions in numerical integration results in unphysical results [15,16].
A gridless symplectic space-charge tracking model and a symplectic
particle-in-cell (PIC) model were proposed in recent studies [17,18].

Even with the use of the symplectic space-charge model, there still
exists artificial emittance growth in long-term space-charge simulations.
This numerical emittance growth could be due to numerical collisional
effects associated with the use of smaller number of macroparticles
in the simulation compared with the real number of particles inside
the beam [19–23]. In this study, we analyzed the numerical emittance
growth in simulations using the symplectic spectral PIC model and pro-
posed a threshold filtering method to mitigate the numerical emittance
growth. In order to improve computational speed in the long-term space-
charge simulation, we also explored a frozen space-charge model in the
simulation.

The organization of this paper is as follows: after the introduction,
we present the symplectic particle-in-cell space-charge model in Sec-
tion 2; we analyzed the numerical emittance growth in self-consistent

E-mail address: jqiang@lbl.gov.

macroparticle tracking and its mitigation in Section 3; we tested the
non-self consistent frozen space-charge simulations in Section 4; and
drew conclusions in Section 5.

2. Symplectic particle-in-cell space-charge model

In the self-consistent symplectic particle-in-cell (PIC) model,
macroparticle phase space coordinate advancing through a single step
𝜏 can be given as:

𝜁 (𝜏) = (𝜏)𝜁 (0)

= 1(𝜏∕2)2(𝜏)1(𝜏∕2)𝜁 (0) + 𝑂(𝜏3) (1)

where the transfer map 1 corresponds to the single particle Hamilto-
nian including external fields and the transfer map 2 corresponds to
the space-charge potential from the multi-particle Coulomb interactions.
The numerical integrator Eq. (1) will be symplectic if both the transfer
map 1 and the transfer map 2 are symplectic. For a coasting
beam inside a rectangular perfectly conducting pipe, the space-charge
potential can be obtained from the solution of the Poisson equation using
a spectral method [18]. The one-step symplectic transfer map 2 of
particle 𝑖 from the space-charge Hamiltonian is given as:

𝑥𝑖(𝜏) = 𝑥𝑖(0) (2)
𝑦𝑖(𝜏) = 𝑦𝑖(0) (3)

𝑝𝑥𝑖(𝜏) = 𝑝𝑥𝑖(0) − 𝜏4𝜋𝐾
∑

𝐼

∑

𝐽

𝜕𝑆(𝑥𝐼 − 𝑥𝑖)
𝜕𝑥𝑖

×

𝑆(𝑦𝐽 − 𝑦𝑖)𝜙(𝑥𝐼 , 𝑦𝐽 ) (4)
𝑝𝑦𝑖(𝜏) = 𝑝𝑦𝑖(0) − 𝜏4𝜋𝐾

∑

𝐼

∑

𝐽
𝑆(𝑥𝐼 − 𝑥𝑖) ×

𝜕𝑆(𝑦𝐽 − 𝑦𝑖)
𝜕𝑦𝑖

𝜙(𝑥𝐼 , 𝑦𝐽 ) (5)
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where both 𝑝𝑥𝑖 and 𝑝𝑦𝑖 are normalized by the reference particle mo-
mentum 𝑝0, 𝐾 = 𝑞𝐼∕(2𝜋𝜖0𝑝0𝑣20𝛾

2
0 ) is the generalized perveance, 𝐼 is the

beam current, 𝜖0 is the permittivity of vacuum, 𝑝0 is the momentum
of the reference particle, 𝑣0 is the speed of the reference particle, 𝛾0
is the relativistic factor of the reference particle, 𝑆(𝑥) is the unitless
shape function (also called deposition function in the PIC model), and
𝜙 denotes the interaction potential between grid point 𝐼 and 𝐽 and is
given as:

𝜙(𝑥𝐼 , 𝑦𝐽 ) = 4
𝑎𝑏

𝑁𝑙
∑

𝑙=1

𝑁𝑚
∑

𝑚=1

1
𝛾2𝑙𝑚

∑

𝐼 ′

∑

𝐽 ′
�̄�(𝑥𝐼 ′ , 𝑦𝐽 ′ ) ×

sin(𝛼𝑙𝑥𝐼 ′ ) sin(𝛽𝑚𝑦𝐽 ′ ) sin(𝛼𝑙𝑥𝐼 ) sin(𝛽𝑚𝑦𝐽 ) (6)

where 𝑎 and 𝑏 are the horizontal (𝑥) and the vertical (𝑦) aperture sizes
respectively, 𝛼𝑙 = 𝑙𝜋∕𝑎, 𝛽𝑚 = 𝑚𝜋∕𝑏, 𝛾2𝑙𝑚 = 𝛼2𝑙 + 𝛽2𝑚, the integers 𝐼 , 𝐽 , 𝐼 ′,
and 𝐽 ′ denote the two dimensional computational grid index, and the
summations with respect to those indices are limited to the range of a
few local grid points depending on the specific deposition function. The
density related function �̄�(𝑥𝐼 ′ , 𝑦𝐽 ′ ) on the grid can be obtained from:

�̄�(𝑥𝐼 ′ , 𝑦𝐽 ′ ) = 1
𝑁𝑝

𝑁𝑝
∑

𝑗=1
𝑆(𝑥𝐼 ′ − 𝑥𝑗 )𝑆(𝑦𝐽 ′ − 𝑦𝑗 ), (7)

In the PIC literature, compact shape functions are used in the
simulation. For example, a quadratic shape function can be written
as [24,25]:

𝑆(𝑥𝐼 − 𝑥𝑖) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

3
4
− (

𝑥𝑖 − 𝑥𝐼
𝛥𝑥

)2, |𝑥𝑖 − 𝑥𝐼 | ≤ 𝛥𝑥∕2

1
2
( 3
2
−

|𝑥𝑖 − 𝑥𝐼 |
𝛥𝑥

)2, 𝛥𝑥∕2 < |𝑥𝑖 − 𝑥𝐼 |

≤ 3∕2𝛥𝑥

0 otherwise

(8)

𝜕𝑆(𝑥𝐼 − 𝑥𝑖)
𝜕𝑥𝑖

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−2(
𝑥𝑖 − 𝑥𝐼
𝛥𝑥

)∕𝛥𝑥, |𝑥𝑖 − 𝑥𝐼 | ≤ 𝛥𝑥∕2

(−3
2
+

(𝑥𝑖 − 𝑥𝐼 )
𝛥𝑥

)∕𝛥𝑥, 𝛥𝑥∕2 < |𝑥𝑖 − 𝑥𝐼 |

≤ 3∕2𝛥𝑥, 𝑥𝑖 > 𝑥𝐼

( 3
2
+

(𝑥𝑖 − 𝑥𝐼 )
𝛥𝑥

)∕𝛥𝑥, 𝛥𝑥∕2 < |𝑥𝑖 − 𝑥𝐼 |

≤ 3∕2𝛥𝑥, 𝑥𝑖 ≤ 𝑥𝐼

0 otherwise

(9)

where 𝛥𝑥 is the mesh size in 𝑥 dimension. The same shape function
and its derivative can be applied to the 𝑦 dimension. The explicit shape
function and its derivative in the above equations results from the
requirement of the symplectic condition [18].

Using the symplectic transfer map 1 for the single particle Hamil-
tonian including external fields from a magnetic optics code [26–28]
and the transfer map 2 for space-charge Hamiltonian, one obtains a
symplectic PIC model including the self-consistent space-charge effects.

3. Numerical emittance growth in long-term simulation

In the long-term macroparticle space-charge tracking simulation,
even with the use of self-consistent symplectic space-charge model,
there still exists numerical emittance growth. To study this effect, we
used a 1 GeV kinetic energy proton beam transporting inside a lattice
that consists of 10 focusing-drift-defocusing-drift (FODO) lattice periods
and one sextupole element per turn. The horizontal and the vertical
aperture sizes are 6.5 mm. A schematic plot of the lattice is shown in
Fig. 1. The zero current tune of the lattice is 2.417. With 30 A beam
current, the corresponding linear space-charge tune shift is 0.113. When
the sextupole strength is set to zero, the lattice is a purely linear FODO

Fig. 1. Schematic plot of a periodic FODO and sextupole lattice.

Fig. 2. The 4D emittance growth evolution in a FODO lattice using 25, 50, 100, 200, and
1600 thousand macroparticles in the simulation.

lattice. When the sextupole strength is nonzero, it can excite nonlinear
resonance which will be further enhanced by the space-charge effects.

Fig. 2 shows the four dimensional (4D) emittance growth ( 𝜖𝑥
𝜖𝑥0

𝜖𝑦
𝜖𝑦0

−
1)% evolution of the 1 GeV, 30 A current proton beam through 40,000
turns of the above lattice with zero sextupole strength and using 25,000,
50,000, 100,000, 200,000, and 1.6 million macroparticles and 64 × 64
spectral modes. The initial 0.5% jump of emittance growth is due to
charge redistribution to match into the lattice. It is seen that with
the increase of the number of macroparticles, the emittance growth
decreases. With the use of 1.6 million macroparticles, there is little
emittance growth which is expected in this linear lattice. The extra
emittance growth with smaller number of macroparticles is a numerical
artifact.

The cause of this numerical artifact can be understood using a one-
dimensional model. Following the spectral method used in the above
symplectic PIC model for the space-charge potential, we calculated
the sine function expansion mode amplitude from a smooth density
distribution function on the grid and from a macroparticle sampled
distribution function depositing onto the grid. Here, the amplitude of
density mode 𝑙 from the sampled macroparticle deposition is given as:

𝜌𝑙 = 1
𝑁𝑝

2
𝑁𝑔𝛥𝑥

∑

𝑖

∑

𝐼
𝑆(𝑥𝐼 − 𝑥𝑖) sin(𝛼𝑙𝑥𝑖) (10)

where 𝑁𝑝 is the total number of macroparticles and 𝑁𝑔 is the total
number of grid cells. Fig. 3 shows the mode amplitude as a function of
mode number from the smooth Gaussian function on the grid, from the
linear particle deposition, from the quadratic particle deposition, and
from the Gaussian kernel particle deposition on the grid using 25,000
macroparticles and 128 grid cells. Here, the Gaussian kernel particle
deposition shape function is defined as:

𝑆(𝑥𝐼 − 𝑥𝑖) =

⎧

⎪

⎨

⎪

⎩

exp (−
(𝑥𝑖 − 𝑥𝐼 )2

2𝜎2
); |𝑥𝑖 − 𝑥𝐼 | ≤ 3.5𝜎

0; otherwise
(11)

and 𝜎 is the chosen as the mesh size.
It is seen that for the smooth Gaussian distribution function, with

mode number beyond 20, the mode amplitude is nearly zero while
the mode amplitude from the macroparticle deposition fluctuates with
a magnitude of about 10−4. Those nonzero high frequency modes
cause fluctuation in density distribution and induce extra numerical
emittance growth. The high frequency mode fluctuation amplitude
becomes smaller from the linear deposition, to the quadratic deposition,
and to the Gaussian kernel deposition. The difference between the linear
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Fig. 3. A Gaussian function (top), and its spectral mode amplitude (bottom) as a function
of mode number from the smooth Gaussian function on the grid (red), from the linear
particle deposition (green), the quadratic particle deposition (blue), and the Gaussian
kernel particle deposition on the grid (magenta) using 25,000 macroparticles and 128 grid
cells. The small plot inside the bottom figure is a zoom-in plot for mode number between
20 and 128 . (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 4. Mode amplitude of the Gaussian function as a function of mode number from
the quadratic particle deposition using 25,000 (red), 50,000 (green) and 100,000 (blue)
macroparticles and 128 grid cells . (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

deposition and the quadratic deposition is small. The Gaussian kernel
deposition shows significantly smaller fluctuation for mode number
greater than 60 since it corresponds to the infinite limit order of the poly-
nomial deposition function [29]. The higher order deposition scheme
spreads the macroparticle across multiple grid points and reduces the
density fluctuation. However, the Gaussian kernel deposition is com-
putationally more expensive in comparison to the other two deposition
methods. It involves a number of exponential function evaluations (eight
in this example) for each macroparticle and is a factor of about seven

Fig. 5. Mode amplitude of the Gaussian function as a function of mode number from the
quadratic particle deposition using 25,000 and 128, 256 and 512 grid cells.

Fig. 6. Mode amplitude standard deviation as a function of mode number from the linear
particle deposition (green), the quadratic particle deposition (blue), and the Gaussian
kernel particle deposition on the grid (magenta) using 25,000 macroparticles and 128
grid cells . (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 7. Mode amplitude standard deviation as a function of mode number from the
quadratic particle deposition using 25,000 (red), 50,000 (green) and 100,000 (blue)
macroparticles and 128 grid cells . (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

(or about five after some function optimization to reduce the number of
exponential function evaluation) slower than the quadratic deposition
in this one dimensional example.

The mode amplitude fluctuation from macroparticle deposition de-
pends on the number of macroparticles used to sample the density
distribution and the number of grid points. Fig. 4 shows the mode
amplitude of the Gaussian function as a function of mode number
(≥20) from the quadratic deposition using 25,000, 50,000, and 100,000
macroparticles and 128 grid cells. With the increase of the number of
macroparticles, the mode amplitude fluctuation becomes smaller. For
a fixed macroparticle number, the mode amplitude fluctuation also
depends on the number of grid cells used in the deposition. Fig. 5 shows
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Fig. 8. Mode amplitude standard deviation as a function of mode number from the
quadratic particle deposition using 25,000 and 128, 256 and 512 grid cells.

Fig. 9. The 4D emittance growth rate as a function of the simulation macroparticle
number using the FODO lattice.

the mode amplitude of the Gaussian function as a function of mode
number (≥20) from the quadratic deposition using 128, 256, and 512 grid
cells and 25,000 macroparticles. As the number of grid cells increases,
the mode amplitude fluctuation becomes larger especially towards the
larger mode number (≥70). The larger mesh size of less grid cell helps
smooth out high frequency fluctuation.

The above fluctuation of the density mode amplitude from macropar-
ticle deposition can be estimated quantitatively using the standard de-
viation (or variance) of the mode amplitude. Given the mode amplitude
𝜌𝑙 in Eq. 10, the variance of 𝜌𝑙 is given as:

𝑣𝑎𝑟(𝜌𝑙) = 1
𝑁𝑝

𝑣𝑎𝑟( 2
𝑁𝑔𝛥𝑥

∑

𝐼
𝑆(𝑥𝐼 − 𝑥𝑖) sin(𝛼𝑙𝑥𝑖)) (12)

where

𝑣𝑎𝑟( 2
𝑁𝑔𝛥𝑥

∑

𝐼
𝑆(𝑥𝐼 − 𝑥𝑖) sin(𝛼𝑙𝑥𝑖)) ≈ 1

𝑁𝑝
( 2
𝑁𝑔𝛥𝑥

)2
∑

𝑖
[
∑

𝐼
𝑆(𝑥𝐼 − 𝑥𝑖)

× sin(𝛼𝑙𝑥𝑖)]2 − (𝜌𝑙)2 (13)

From the variance of each mode amplitude, one can calculate the stan-
dard deviation (std) of each mode amplitude by taking the square root
of the variance. Fig. 6 shows the mode amplitude standard deviation as
a function of mode number for the above Gaussian function by using
the linear deposition, the quadratic deposition, and the Gaussian kernel
deposition. The mode amplitude standard deviation is small at small
mode number and grows quickly to 10−4 level and start to decrease after
about 10 modes. The standard deviation among the three deposition
schemes becomes smaller as the order of deposition scheme becomes
higher. The Gaussian kernel deposition shows least mode amplitude
standard deviation which is consistent with the results in Fig. 3.

In Fig. 7, we show the mode amplitude standard deviation as a func-
tion of mode number using 25,000, 50,000, and 100,000 macroparticle
sampling of the Gaussian distribution. The standard deviation decreases

Fig. 10. The 4D emittance growth evolution in the FODO and sextupole lattice using 25,
50, 100, 200, and 1600 thousand macroparticles in the simulation.

with the increase of the macroparticle number and scales as 1∕
√

𝑁𝑝
as expected from Eq. (12). Fig. 8 shows the mode amplitude standard
deviation as a function of mode number using 128, 256, and 512 grid
cells and 25,000 macroparticles for the above Gaussian distribution. For
small mode number (less than 10), the standard deviation is close among
three numbers of grid cells. For larger mode number, the standard
deviation of the small number of grid cells is smaller, which is also seen
in Fig. 5.

The error in the charge density mode amplitude results in error in
the solution of space-charge potential and the corresponding force in
momentum update in Eqs. (4)–(5). Assume that the error of force in 𝑥
momentum update is 𝛿𝐹 , after one step 𝜏, i.e. 𝑥2 = 𝑥1, 𝑥′2 = 𝑥′1 + 𝛿𝐹𝜏,
the new emittance under the effect of this force will be:

𝜖22 = ⟨𝑥22⟩⟨𝑥
′2
2 ⟩ − ⟨𝑥2𝑥

′
2⟩

2

= ⟨𝑥21⟩⟨𝑥
′2
1 ⟩ − ⟨𝑥1𝑥

′
1⟩

2 +

2(⟨𝑥21⟩⟨𝑥
′
1𝛿𝐹 ⟩ − ⟨𝑥1𝑥

′
1⟩⟨𝑥1𝛿𝐹 ⟩)𝜏 + (⟨𝑥21⟩⟨𝛿𝐹

2
⟩ − ⟨𝑥1𝛿𝐹 ⟩

2)𝜏2 (14)

where ⟨⟩ denotes the average with respect to the particle distribution.
The above equation can be rewritten as:

𝜖22 = 𝜖21 +

2(⟨𝑥21⟩⟨𝑥
′
1𝛿𝐹 ⟩ − ⟨𝑥1𝑥

′
1⟩⟨𝑥1𝛿𝐹 ⟩)𝜏 + (⟨𝑥21⟩⟨𝛿𝐹

2
⟩ − ⟨𝑥1𝛿𝐹 ⟩

2)𝜏2 (15)

and the emittance growth due to this error will be:

𝛥𝜖 ≈ (⟨𝑥2⟩⟨𝑥′𝛿𝐹 ⟩ − ⟨𝑥𝑥′⟩⟨𝑥𝛿𝐹 ⟩)𝜏∕𝜖 + 1
2
(⟨𝑥2⟩⟨(𝛿𝐹 )2⟩ − ⟨𝑥𝛿𝐹 ⟩

2)𝜏2∕𝜖 (16)

If 𝛿𝐹 is a linear function of the position 𝑥, the emittance growth will
be zero as expected since the linear force will not change the beam
emittance. If 𝛿𝐹 is a random error force with zero mean and independent
of 𝑥 and 𝑥′, the emittance growth would be
𝛥𝜖
𝜏

≈ 1
2
⟨𝑥2⟩⟨(𝛿𝐹 )2⟩𝜏∕𝜖 (17)

which is in agreement with the result of Ref. [23]. Assume that this error
is due to mode amplitude fluctuation of the finite number of macropar-
ticles sampling, from the above example, we see that ⟨(𝛿𝐹 )2⟩ ∝ 1∕𝑁𝑝.
This suggests that the numerical emittance growth would decrease
as more macroparticles are used. If 𝛿𝐹 is not a purely random error
force (e.g. due to systematic truncation error), the dependence of the
emittance growth on the number of macroparticle is more complicated.
Fig. 9 shows the 4D emittance growth rate as a function of macroparticle
number in the linear FODO lattice using 256 × 256 grid cells. It is seen
that the emittance growth rate scales as 1∕𝑁𝑝, which agrees well with
the scaling of the random sample fluctuation induced emittance growth.

In the above example, we used a linear FODO lattice with zero
sextupole strength. When the sextupole strength is nonzero, it can excite
third order resonance. Fig. 10 shows the 4D emittance growth evolution
of the 30 A proton beam inside a lattice with an effective 10∕𝑚∕𝑚
integrated sextupole strength using several macroparticle numbers and
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Fig. 11. The 4D emittance growth rate as a function of macroparticle number using the
FODO and sextupole lattice.

Fig. 12. The mode amplitude of a 2D Gaussian distribution without (top) and with 1%
threshold filter (bottom).

64 × 64 modes. Besides the physical emittance growth caused by the
resonance, there also exists significant numerical emittance growth due
to the finite macroparticle sampling. Fig. 11 shows the emittance growth
rate in this case as function of the macroparticle number. It appears
that in this case, the emittance growth rate scales close to 1∕

√

𝑁𝑝. This
slower scaling with respect to the 𝑁𝑝 might be due to the interaction
between the numerical force error and the nonlinear resonance.

The charge density fluctuation from the macroparticle sampling can
be further smoothed out by using a numerical filter in frequency domain
besides employing the shape function for particle deposition. As seen
from the above one-dimensional example, the shape function helps
suppress high frequency errors. However, even with the use of the shape
function, there still exists significant level of mode amplitude error
fluctuation for mode number greater than 20. Those mode amplitude

Fig. 13. The mode amplitude of a 2D Gaussian distribution with two sigma standard
deviation (top) and with four sigma standard deviation threshold filter (bottom).

errors can be removed by numerical filtering in the frequency domain.
Instead of using a standard cut-off method that removes all modes
beyond a given mode number (i.e. cut-off frequency), we proposed
using an amplitude threshold method to remove unwanted modes. The
mode with an amplitude below the threshold value is removed from
the density distribution. The advantage of this method is instead of
removing all high frequency modes, it will keep the high frequency
modes with large amplitudes. These modes can represent real physics
structures inside the beam. The threshold also removes the unphysical
low frequency modes associated with the small number of macropar-
ticle sampling. Here, we explored two threshold methods. In the first
threshold method, the threshold value is calculated from a given fraction
of the maximum amplitude of the density spectral distribution. In
the second method, the threshold value is defined as a few standard
deviations of the mode amplitude as shown in the one-dimensional
Gaussian function example. The mode with an amplitude below the
threshold value is regarded as numerical sampling error due to the use
of small number of macroparticles and is removed from the density
distribution. The advantage of the first method is that the threshold
value is readily attainable from the density spectral distribution. The
disadvantage of this method is that the threshold fraction is an external
supplied hyperparameter. The advantage of the second method is that
the threshold value is calculated dynamically through the simulation.
The disadvantage of this method is the computational cost to obtain
the standard deviation of each mode. The total computational cost
of those standard deviations is proportional to the number of modes
multiplied by the number of macroparticles. This makes computing the
mode amplitude standard deviations more expensive than computing
the mode amplitudes (proportional to the number of macroparticles)
and not affordable at every time step. In practice, these mode amplitude
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Fig. 14. The 4D emittance growth with 64 × 64, 32 × 32, 16 × 16 modes cut-off filtering
of the charge density distribution using 25k in the FODO lattice.

Fig. 15. The 4D emittance growth with 0 (no filtering) with 0.005, 0.01 and 0.05
threshold filtering of charge density distribution using 25k macroparticles and 0 filtering
using 1600k macroparticles in the FODO lattice.

standard deviations can be computed once (or once in while) during
the simulation and reused in the following simulation. Fig. 12 shows
the spectral amplitude of a 2D Gaussian density distribution without
and with 0.01 threshold filter using 128 × 128 grid cells and 25,000
macroparticles with the quadratic deposition method. The standard
cut-off filter with 16 × 16 and 32 × 32 modes are also indicated in
above plot. Most high frequency noise is removed in this distribution by
using the threshold filtering method. Fig. 13 shows the above sampled
spectral amplitude distribution by using the threshold values of two-
sigma standard deviation and four-sigma standard deviation. The two-
sigma standard deviation threshold value does not remove all the higher
frequency errors.

As a test of the threshold filtering method, we reran the above space-
charge long-term simulation in the linear FODO lattice using 0 (no
filtering), 0.005, 0.01 and 0.05 threshold filtering the charge density in
the simulation and 25,000 macroparticles and the brute force direct cut-
off filtering. Here, the larger threshold value, the less number of modes
will be included in the simulation. Those results are shown in Figs. 14–
15. It is seen that without numerical filtering, there is significant
emittance growth after 40,000 turns. With 0.05 threshold filtering, there
is little emittance growth, which is consistent with the expected physics
emittance growth by using 1600k macroparticles without filtering. Both
the brute force filtering and the threshold filtering work well in this case.

We also reran the simulation of 30A proton beam transport in a
lattice including nonlinear sextupole element shown in Fig. 10. The
4D emittance growth evolutions using the brute force cut-off and the
threshold filtering are shown in Fig. 16. It is seen that even with 16 × 16
mode cut-off filtering, there still exists significant emittance growth,
while a threshold value 0.1 helps significantly lower the emittance
growth. Using the four-sigma standard deviation threshold value yields
similar emittance growth to the fraction threshold (0.1) as shown in
Fig. 17. The amplitude threshold filtering works better than the cut-off

Fig. 16. The 4D emittance growth using 64 × 64, 32 × 32, 16 × 16 modes (top) and
with 0 (no filtering) with 0.01, 0.05 and 0.1 threshold filtering (bottom) of charge density
distribution using 25k macroparticles in a FODO and sextupole lattice.

Fig. 17. 4D emittance growth with one sigma, two sigma, four sigma standard deviation
and 0.1 maximum amplitude threshold filtering of charge density distribution using 25k
macroparticles in a FODO and sextupole lattice.

filtering in this case because it removes not only the unwanted high
frequency errors but also the unwanted low frequency errors, while
the cut-off filtering removes only the high frequency errors. Those low
frequency errors interact with the nonlinear resonance and cause extra
emittance growth.

4. Frozen space-charge simulation

In order to improve computational speed in the long-term simula-
tion, we also explored a frozen space-charge model during the simu-
lation [30–32]. Here, instead of self-consistently updating the space-
charge calculation at every time step, after some initial time steps, we
store the solutions of the space-charge potential along the lattice and
reuse those stored space-charge potentials for the following long-term
simulation. This model assumes that after some initial time steps, the
charge density distribution will not vary significantly from turn to turn.
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Fig. 18. The 4D emittance growth evolution from the self-consistent simulation (red) and
the frozen space-charge simulation (green) in a FODO lattice.

Fig. 19. The 4D emittance growth evolution from the self-consistent simulation (red) and
the frozen space-charge model (green) in a FODO and sextupole lattice.

Fig. 20. The 4D emittance growth evolution from the frozen space-charge model simula-
tion with 10 A, 20 A and 30 A beam currents in a FODO and sextupole lattice.

Fig. 18 shows the total 4D emittance growth evolution inside the
above linear FODO lattice example from the simulation using the self-
consistent tracking and from the simulation using the frozen space-
charge model after initial 200 turns with 0.05 threshold filtering,
128 × 128 grid cells, and 25,000 macroparticles. It is seen that emittance
growth evolution from the frozen space-charge simulation agrees with
that from the self-consistent simulation quite well. The computational
speed of the frozen space-charge simulation is about a factor of six faster
than the self-consistent simulation in this case.

We also ran the 30 A proton beam through the FODO and sextupole
lattice using the frozen simulation and the self-consistent simulation.
Fig. 19 shows the 4D emittance growth evolution from the frozen space-
charge simulation together with the emittance growth from the self-
consistent space-charge simulation with 1.6 million macroparticles and
0.1 threshold filtering. The emittance growth from the self-consistent
simulation has converged with respect to the number of macroparticles.

In this example, both the frozen space-charge simulation and the
self-consistent simulation show emittance growth driven by the third
order resonance, while the frozen simulation shows significantly less
emittance growth.

Fig. 20 shows the 4D emittance growth evolution of the 1 GeV proton
beam through the above FODO and sextupole lattice with 10 A, 20 A,
and 30 A beam current from the frozen space-charge simulation. It is
seen that with small current, there is little emittance growth caused
by the third-order resonance. This is due to the fact that the lattice
tune working point is 2.417, and the linear space-charge tune shift
0.038 with 10 A, 0.075 with 20 A, and 0.113 with 30 A current.
With the increase of the current from 10 A to 30 A, more and more
particles move into the 3rd order (2.333) resonance and results in
larger emittance growth as observed in the simulation. The frozen
space-charge simulation qualitatively reproduce the physical results of
resonance driven emittance growth, which was also observed in the self-
consistent space-charge simulation [18].

5. Conclusion

The long-term macroparticle tracking simulation is computationally
challenging but needed for the study of space-charge effects in high
intensity circular accelerators such as a synchrotron. In this study,
we propose using symplectic PIC model with the threshold filtering
in frequency domain and frozen space-charge model to address those
challenges.

There exists slow numerical emittance growth in the long-term
simulation even with the use of symplectic space-charge model. This
numerical emittance could be caused by the high frequency density
fluctuation or unphysical low frequency density modes associated with
the use of small number of macroparticles. In a linear lattice without
nonlinear resonance, the artificial emittance growth rate scales inversely
as the number of macroparticles when the random sampling error is
dominant. In a nonlinear lattice, the artificial emittance growth rate
scaling becomes more complicated due to the interaction between the
low frequency error and the nonlinear resonance.

The numerical artifacts from macroparticle sampling can be miti-
gated by the use of threshold filtering in frequency domain. By ap-
propriately choosing threshold value, the numerical emittance growth
can be significantly reduced in the long-term simulation. Here, we
proposed two types of threshold values. One type of threshold value is a
predefined fraction of the maximum amplitude of the charge density
spectral distribution. The other type of threshold value is based on
the standard deviation of mode amplitude and can be dynamically
calculated from the particle distribution in the simulation (this can be
computationally expensive). Both types of threshold values yield similar
simulation results with appropriate choice of threshold values. The use
of numerical filtering is under the situation where significant numerical
emittance growth observed in the simulation.

In order to improve the computing speed, we also explored a frozen
space-charge model that stores the space-charge potential solutions after
some initial time steps and reuse those space-charge potentials in the
following long-term simulation. This method significantly reduces the
computing time and yields qualitatively reasonable simulation results
in comparison to the self-consistent space-charge simulation in the
examples used in this study. The frozen space-charge model can be used
when the beam charge density does not vary significantly from turn
to turn. This corresponds to the situation that the particle beam is not
subject to any coherent instability or strong resonance.
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