
Nuclear Inst. and Methods in Physics Research, A 867 (2017) 15–19

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

A fast numerical integrator for relativistic charged particle tracking
Ji Qiang
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

a r t i c l e i n f o

Keywords:
Numerical integrator
Relativistic charged particle

a b s t r a c t

In this paper, we report on a fast second-order numerical integrator to solve the Lorentz force equations of a
relativistic charged particle in electromagnetic fields. This numerical integrator shows less numerical error than
the popular Boris algorithm in tracking the relativistic particle subject to electric and magnetic space-charge
fields and requires less number of operations than another recently proposed relativistic integrator.
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1. Introduction

Numerical tracking charged particle motion in electric and magnetic
fields has many applications in beam physics and plasma physics. This
normally involves solving the Lorentz force equations with electro-
magnetic fields numerically. A popular method to solve the Lorentz
equation subject to electromagnetic fields is the Boris integrator [1].
This integrator is time reversible and preserves phase space volume
[2,3]. These properties make it suitable for long-term particle tracking.
However, in recent study of the relativistic electron beam dynamics
subject to its space-charge fields, we observed large numerical errors
using the Boris integrator. These errors result from updating momenta
using electric field and magnetic field in separate steps. For the space-
charge forces in laboratory frame, there is a large cancellation between
the electric field contribution and the magnetic field contribution in the
Lorentz force equation, which results in 1∕𝛾2 decrease of the transverse
space charge forces in the laboratory frame. Here, 𝛾 = 𝐸∕𝑚𝑐2 + 1
is the relativistic factor, E the kinetic energy of the particle, m the
rest mass of the particle, and the c the speed of light in vacuum. The
lack of appropriate cancellation of electric and magnetic forces in the
Boris integrator for a relativistic charged particle causes significant error
in numerical tracking. The problem of using the Boris algorithm for
relativistic charged particle was also observed in another early study [4].
By taking infinite limit of the relativistic factor, the author of reference
[4] observed that the Boris algorithm would bear no physical solutions.
A new time-reversible second-order numerical integrator was proposed
in reference [4] for relativistic charged particle tracking. This integrator
works properly with large relativistic factor but is more mathematically
complex and also requires more numerical operations than the Boris
integrator.

E-mail address: jqiang@lbl.gov.

In this paper, we propose a new fast second-order integrator that
works well with large relativistic factor and also requires less numerical
operations than the Boris integrator for relativistic charged particle
tracking. The organization of this paper is as follows: after the introduc-
tion, we present the fast second-order numerical integrator in Section
2; We present numerical tests of the integrator in Section 3 and draw
conclusions in Section 4.

2. Fast second-order numerical integrator

The Lorentz equations of motion for a charged particle subject to
electric and magnetic fields can be written as:

𝑑𝐫
𝑑𝑡

=
𝐩𝑐
𝛾

(1)

𝑑𝐩
𝑑𝑡

= 𝑞
(

𝐄
𝑚𝑐

+ 1
𝑚𝛾

𝐩 × 𝐁
)

(2)

where 𝐫 = (𝑥, 𝑦, 𝑧) denotes the particle spatial coordinates, 𝐩 =
(𝑝𝑥∕𝑚𝑐, 𝑝𝑦∕𝑚𝑐, 𝑝𝑧∕𝑚𝑐) the particle normalized mechanic momentum, m
the particle rest mass, q the particle charge, c the speed of light in
vacuum, 𝛾 the relativistic factor defined by

√

1 + 𝐩 ⋅ 𝐩, t the time,
𝐄(𝑥, 𝑦, 𝑧, 𝑡) the electric field, and 𝐁(𝑥, 𝑦, 𝑧, 𝑡) the magnetic field. Instead
of using the time t as an explicit independent variable, we rewrite the
above equations using s as independent variable:

𝑑𝑡
𝑑𝑠

= 1 (3)
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Letting 𝜁 (𝑡, 𝐫,𝐩∶𝑠) denote a vector of coordinates, the above equa-
tions of motion can be rewritten as:

𝑑𝜁
𝑑𝑠

= 𝐴𝜁 (6)

where the matrix A is a given as:
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(7)

A formal solution for above equation after a single step 𝜏 can be written
as:

𝜁 (𝜏) = exp(𝐴𝜏)𝜁 (0) (8)

The matrix A can be written as a sum of two terms 𝐴 = 𝐵 + 𝐶, where
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Using the Baker-Campbell-Hausdorff theorem [5–7], a second-order
approximation for above single step solution can be obtained as:

𝜁 (𝜏) = exp(𝜏(𝐵 + 𝐶))𝜁 (0)

= exp( 1
2
𝜏𝐵) exp(𝜏𝐶) exp( 1

2
𝜏𝐵)𝜁 (0) + 𝑂(𝜏3)

(11)

Letting exp( 12 𝜏𝐵) define a transfer map 1 and exp(𝜏𝐶) a transfer map
2, for a single step, the above splitting results in a second-order
numerical integrator for the original equation as:

𝜁 (𝜏) = (𝜏)𝜁 (0)
= 1(𝜏∕2)2(𝜏)1(𝜏∕2)𝜁 (0) + 𝑂(𝜏3)

(12)

From definitions of the matrices B and C, it is seen that the transfer map
1 corresponds to the solutions of Eqs. (3) and (4) for half step, and
the transfer map 2 corresponds to the solution of Eq. (5) for one step.
The solution of the transfer map 1(𝜏∕2) is straightforward and can be
written as:

𝑡(𝜏∕2) = 𝑡(0) + 𝜏
2

(13)

𝐫(𝜏∕2) = 𝐫(0) + 𝜏𝐩
2𝛾

(14)

The 2(𝜏) can have different second-order solutions depending on
different ways of approximation. In the Boris algorithm, 2(𝜏) is given
as:

𝐩− = 𝐩(0) + 𝑞𝐄𝜏
2𝑚𝑐

(15)

𝛾− =
√

1 + 𝐩− ⋅ 𝐩− (16)

𝐩+ − 𝐩− = (𝐩+ + 𝐩−) ×
𝑞𝐁𝜏
2 𝑚𝛾−

(17)

𝐩(𝜏) = 𝐩+ +
𝑞𝐄𝜏
2𝑚𝑐

(18)

where 𝐩+ can be solved analytically from the linear equation Eq. (17).
The Boris algorithm is time-reversible and has been widely used in
numerical plasma and beam physics simulations [8–11]. The particle
momenta are updated using electric force in Eqs. (15) and (18), and
using magnetic force in Eq. (17). The lack of direct cancellation from
electric fields and magnetic fields can introduce large error to simulate
relativistic charged particles including space-charge effects, where the
electric field and the magnetic field cancel each other significantly in the
laboratory frame and results in 1∕𝛾2 decrease of the transverse space-
charge forces.

The time-reversible solution for 2(𝜏) proposed in reference [4] is
given as:

𝛾0 =
√

1 + 𝐩 ⋅ 𝐩 (19)

𝐩− = 𝐩(0) + 𝑞𝜏
2𝑚𝑐

(𝐄 + 𝑐𝐩∕𝛾0 × 𝐁) (20)
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𝑞𝐄𝜏
2𝑚𝑐

(21)
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(23)

𝜆 = 𝐩+ ⋅ 𝐭 (24)

𝜎 = 𝛾21 − 𝐭 ⋅ 𝐭 (25)

𝛾2 =

√

𝜎 +
√

𝜎2 + 4(𝐭 ⋅ 𝐭 + 𝜆2)
2

(26)

𝐭∗ = 𝐭∕𝛾2 (27)

𝑠 = 1∕(1 + 𝐭∗ ⋅ 𝐭∗) (28)

𝐩(𝜏) = 𝑠[𝐩+ + (𝐩+ ⋅ 𝐭∗)𝐭∗ + 𝐩+ × 𝐭∗] (29)

This algorithm works well for charged particle tracking with large
relativistic factor. However, it is also mathematically more complex than
the Boris algorithm and requires more numerical calculation than the
Boris integrator does.

The source of error in the Boris algorithm results from the lacking
appropriate cancellation of the electric force and the magnetic force in
the space-charge fields. This can be solved by updating the momenta
using both electric force and magnetic force in the same step instead
of separate steps. Here, we propose a new second-order integrator for
transfer map 2(𝜏) as follows:

𝐩− = 𝐩(0) + 𝑞
𝑚𝑐

(𝐄 + 𝐯(0) × 𝐁)𝜏 (30)

𝐯+ =
𝐯(0) + 𝐯−

2
(31)

𝐩(𝜏) = 𝐩(0) + 𝑞
𝑚𝑐

(𝐄 + 𝐯+ × 𝐁)𝜏 (32)

16



J. Qiang Nuclear Inst. and Methods in Physics Research, A 867 (2017) 15–19

where 𝐯 = 𝐩𝑐∕𝛾. This algorithm includes the direct cancellation of the
electric force and the magnetic force from the space-charge fields and
works well for large relativistic factor. It has a simple mathematical form
and also requires less numerical operations than the Boris integrator and
the Vay integrator.

3. Numerical tests

We tested the above new second-order integrator using several
numerical examples. In the first example, we considered an electron
moving inside the static electric and magnetic fields generated by a co-
moving positron beam. These fields are given as:

𝐸𝑥 = 𝐸0𝑥𝛾0 (33)

𝐸𝑦 = 𝐸0𝑦𝛾0 (34)

𝐸𝑧 = 0 (35)

𝐵𝑥 = −𝐸0𝑦𝛾0𝛽0∕𝑐 (36)

𝐵𝑦 = 𝐸0𝑥𝛾0𝛽0∕𝑐 (37)

𝐵𝑧 = 0 (38)

where 𝛾0 is the relativistic factor of the moving positron beam, 𝛽0 =
√

1 − (1∕𝛾0)2, and the constant 𝐸0 = 9× 106 𝑉 ∕𝑚2. The above fields cor-
respond to the space-space fields generated by the co-moving infinitely
long transversely uniform cylindrical positron beam.

First, we assume that both the initial electron kinetic energy and the
co-moving positron beam kinetic energy are 50 MeV. Fig. 1 shows the
electron transverse trajectory (𝑥) evolution as a function of time from the
Boris integrator (magenta), the Vay integrator (green), the new integra-
tor (blue) with a step size of 1 ns (around 0.002 oscillation period), and
the approximate analytical solution (red). Here, the analytical solution
is obtained in the co-moving frame without including the relativistic
effects and then Lorentz transformed back to the laboratory frame. The
analytical solution for the x trajectory starting with initial 0 momentum
is given as:

𝑥(𝑡) = 𝑥0 cos(
√

𝑞𝐸0∕𝑚∕𝛾0𝑡) (39)

where 𝑥0 = 1 mm is the initial horizontal position. We see that all
solutions agree well with each other for the first couple of oscillation
periods. The solution from the Boris integrator starts to deviate from
the other solutions while the other three solutions are still on top of
each other.

Fig. 2 shows the relative numerical errors at the end of the above
integration as a function of step size from the Boris integrator (magenta),
the Vay integrator (green), and the new proposed integrator (blue)
together with a quadratic monomial function (red). It is seen that all
three numerical integrators converge as 2nd power with respect to the
step size. However, the Boris integrator yields much larger errors than
the Vay integrator and the new integrator in this example. The Vay
integrator and the new integrator barely show any noticeable difference
in this example.

Next, we assumed that both the initial electron and the co-moving
positron beam have a kinetic energy of 100 MeV. Fig. 3 shows the
electron x coordinate evolution as a function of time from the Boris

Fig. 1. Particle x coordinate evolution as a function of time from the Boris integrator
(magenta), the Vay integrator (green), the new integrator (blue), and the analytical
solution for an electron with 50 MeV kinetic energy (red). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)

integrator (magenta), the Vay integrator (green), the new integrator
(blue) with a step size of 1 ns (around 0.001 oscillation period), and
the analytical solution (red).

It is seen that even after one oscillation period, the solution from the
Boris integrator starts to deviate from the other solutions while the other
three solutions are still on top of each other. Fig. 4 shows the relative
numerical errors at the end of the above integration as a function of
time step size from the Boris integrator, the Vay integrator, and the new
integrator.

As expected, all three second-order accuracy numerical integrators
converge as power of 2 with respect to the time step size. However, the
errors from the Boris integrator are about 4 orders of magnitude larger
than those from the other two integrators. These errors become worse in
this example (100 MeV) compared with those in the 50 MeV example.

In the second example, we tracked a 100 MeV electron in above
electric and magnetic fields for more 500,000 periods using the new
second-order numerical integrator with time step size of 100 ns. The
relative kinetic energy growth as a function of time is shown in Fig.
5. It is seen that except the oscillation from energy exchange, there
is no steady state secular energy increase or decrease resulting from
numerical heating or damping of the proposed new integrator.

Fig. 2. Relative numerical errors at the end of the above integration as a function of step
size from the Boris integrator (magenta), the Vay integrator (green), the new integrator
(blue), and the analytical solution for an electron with 50 MeV kinetic energy. A quadratic
monomial function is also plotted here (red). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Particle x coordinate evolution as a function of time from the Boris integrator
(magenta), the Vay integrator (green), the new integrator (blue), and the analytical
solution (red) for an electron with 100 MeV kinetic energy. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 4. Relative numerical errors at the end of the above integration as a function of
step size from the Boris integrator (magenta), the Vay integrator (green), and the new
integrator (blue) for an electron with 100 MeV kinetic energy. A quadratic monomial
function is also plotted here (red). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 6 shows the phase space trajectory of the electron from the
proposed new algorithm and from the Vay algorithm. It is seen that both
integrators agree with each other very well. The phase space structure
is well preserved after 500,000 periods.

In the third numerical example, we simulated a 1 nC electron beam
with an initial 50 MeV kinetic energy transporting through a free space.
The initial distribution of the beam is assumed to be semi-Gaussian,
with transverse rms size of 0.5 mm, and transverse rms emittance of
0.5 μm. The initial longitudinal rms size is 1 mm and 0 rms longitudinal
emittance. An electron inside the beam will be subject to Coulomb
forces from other electrons. Here, we neglected scattering effects from
other electrons and included only the mean field space-charge electro-
magnetic forces. The simulation was done using a quasi-static particle-
in-cell code, IMPACT-T [11], to include the space-charge effects self-
consistently. The electric and magnetic fields were computed by solving
the three-dimensional Poisson equation in the beam frame and then
transformed to the laboratory frame using the Lorentz transformation.
The number of macroparticles used in this simulation is 1.28 millions
with 64 × 64 × 64 grid points. Fig. 7 shows transverse rms size evolution
of the electron beam from the numerical simulation using the new

Fig. 5. Relative kinetic energy growth evolution of an initial 100 MeV electron.

Fig. 6. Electron phase space trajectory from the new integrator and the Vay integrator.

integrator with 800 ps time step size and the Boris integrator with 800 ps
step size together with a solution with much smaller 8 ps time step size.
It is seen that the Boris integrator yields significantly larger rms size
than the other two solutions. This suggests that given the same time
step size, the new numerical integrator should be more accurate than
the Boris integrator to simulate a relativistic electron beam including
space-charge effects.

4. Conclusions and discussions

In this paper, we proposed a simple, fast second-order accuracy
numerical integrator for relativistic charged particle tracking. It has
less numerical error than the popular Boris integrator for tracking
a relativistic electron subject to space-charge fields. It also requires
less number of numerical operations than the relativistic Vay inte-
grator. Recently, another time-reversible, volume preserving, second-
order accuracy integrator was proposed to be valid for large relativistic
factor [12] after the above work was done. This integrator replaces
the 𝛾− in Eq. (17) by a new more complex 𝛾, which is obtained from
the solution of a quadratic equation. This integrator requires more
numerical operations than the fast integrator proposed in this study.

The proposed second-order integrator for relativistic particle track-
ing has the advantages of simplicity and speed. Nevertheless, it is
not time reversible, neither volume preserving. This may cause some
numerical errors in long-term tracking. However, from above numerical
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Fig. 7. Transverse rms size evolution of the electron beam from the new algorithm and
the Boris algorithm with 800 ps time step size and the solution using much smaller 8 ps
time step size.

example for tracking an electron through 500,000 periods, it appears
that this integrator works quite well in preserving phase space structure
along with the time-reversible Vay integrator.
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