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Symplectic tracking is important in accelerator beam dynamics simulation. So far, to the best of our
knowledge, there is no self-consistent symplectic space-charge tracking model available in the accelerator
community. In this paper, we present a two-dimensional and a three-dimensional symplectic multiparticle
spectral model for space-charge tracking simulation. This model includes both the effect from external
fields and the effect of self-consistent space-charge fields using a split-operator method. Such a model
preserves the phase space structure and shows much less numerical emittance growth than the particle-in-
cell model in the illustrative examples.
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I. INTRODUCTION

In high intensity accelerators, the nonlinear space-charge
effect from charged particle interactions inside the beam
has significant impact on beam dynamics through the
accelerator. It causes beam emittance growth, halo for-
mation, and even particle losses along the accelerator. To
study the space-charge effect, multiparticle tracking has
been employed to dynamically follow those charged
particles through the accelerator. In the accelerator com-
munity, most of those multiparticle tracking codes use the
particle-in-cell (PIC) method to include the space-charge
effect self-consistently in the simulation [1–11].
The particle-in-cell method is an efficient method in

handling the space-charge effect self-consistently. It uses a
computational grid to obtain the charge density distribution
from a finite number of macroparticles and solves the
Poisson equation on the grid at each time step. The
computational cost is linearly proportional to the number
of macroparticles, which makes the simulation fast for many
applications. However, those grid based, momentum con-
served, PIC codes do not satisfy the symplectic condition of
classic multiparticle dynamics. Violating the symplectic
condition in multiparticle tracking might not be an issue
in a single pass system such as a linear accelerator. In a
circular accelerator, violating the symplectic condition may
result in undesired numerical errors in the long-term tracking
simulation. This issue together with the numerical grid
heating was brought up during the 2015 space-charge
workshop at Oxford [12]. A gridless spectral based macro-
particle model was suggested by the author at the workshop

to mitigate the numerical grid heating and to satisfy the
symplectic condition of particle tracking.
Multisymplectic particle-in-cell model was proposed to

study Vlasov-Maxwell system and electrostatic system in
plasmas using a variational method [13–17]. To study the
space-charge effect in high intensity beams, a quasistatic
model is normally employed. In the quasistatic model, a
moving beam frame is used to contain all charged particles
through the accelerator. The Poisson equation is solved in
the beam frame to obtain electric Coulomb fields from the
charged particles. These electric fields are transformed to
the laboratory frame through the Lorentz transformation.
The space-charge forces acting on each individual particle
include both the electric fields and the magnetic fields,
which is different from the electrostatic model that includes
only electric fields. To the best of our knowledge, at
present, there is no symplectic self-consistent space-charge
model available in the accelerator community. In this paper,
following the idea suggested at the Oxford workshop, we
present a two-dimensional and a three-dimensional sym-
plectic quasistatic multiparticle tracking model for space-
charge simulations. The model presented here starts from
the multiparticle Hamiltonian directly and uses a gridless
spectral method to calculate the space-charge forces.
The organization of this paper is as follows: after the

introduction, we present the symplectic multiparticle
tracking model including the space-charge effect in
Sec. II; We present a symplectic space-charge transfer
map for a 2D coasting beam in Sec. III and a symplectic
space-charge map for a 3D bunched beam in Sec. IV; We
discuss computational complexity of the proposed model in
Sec. V and draw conclusions in Sec. VI.

II. SYMPLECTIC MULTIPARTICLE TRACKING
WITH SPACE-CHARGE EFFECTS

In the accelerator beam dynamics simulation, for a
multiparticle system with Np charged particles subject to
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both a space-charge self field and an external field, an
approximate Hamiltonian of the system can be written as
[18–20]:

H ¼
XNp

i¼1

p2
i =2þ

1

2

XNp

i¼1

XNp

j¼1

qφðri; rjÞ þ
XNp

i¼1

qψðriÞ ð1Þ

where Hðr1; r2;…; rNp
;p1;p2;…;pNp

; sÞ denotes the
Hamiltonian of the system using distance s as an inde-
pendent variable, φ is related to the space-charge inter-
action potential between the charged particles i and j
(subject to appropriate boundary conditions), ψ denotes
the potential associated with the external field, ri ¼
ðxi; yi; θi ¼ ωΔtÞ denotes the normalized canonical spatial
coordinates of particle i, pi ¼ ðpxi; pyi; pti ¼ −ΔE=mC2Þ
the normalized canonical momentum coordinates of par-
ticle i, andω the reference angular frequency,Δt the time of
flight to location s, ΔE the energy deviation with respect to
the reference particle,m the rest mass of the particle, and C
the speed of light in vacuum. The equations governing the
motion of individual particle i follows the Hamilton’s
equations as:

dri
ds

¼ ∂H
∂pi

ð2Þ

dpi

ds
¼ −

∂H
∂ri : ð3Þ

Let ζ denote a 6N-vector of coordinates, the above
Hamilton’s equation can be rewritten as:

dζ
ds

¼ −½H; ζ� ð4Þ

where [,] is the Poisson bracket. A formal solution for
above equation after a single step τ can be written as:

ζðτÞ ¼ expð−τð∶H∶ÞÞζð0Þ: ð5Þ

Here, we have defined a differential operator ∶H∶ as
∶H∶g ¼ ½H; g�, for arbitrary function g. For a
Hamiltonian that can be written as a sum of two terms
H ¼ H1 þH2, an approximate solution to the above
formal solution can be written as [21]

ζðτÞ ¼ expð−τð∶H1∶þ ∶H2∶ÞÞζð0Þ

¼ exp

�
−
1

2
τ∶H1∶

�
expð−τ∶H2∶Þ

× exp

�
−
1

2
τ∶H1∶

�
ζð0Þ þOðτ3Þ: ð6Þ

Let expð− 1
2
τ∶H1∶Þ define a transfer map M1 and

expð−τ∶H2∶Þ a transfer map M2, for a single step, the

above splitting results in a second order numerical inte-
grator for the original Hamilton’s equation as:

ζðτÞ ¼ MðτÞζð0Þ
¼ M1ðτ=2ÞM2ðτÞM1ðτ=2Þζð0Þ þOðτ3Þ: ð7Þ

Using the above transfer maps M1 and M2, a fourth
order numerical integrator can also be constructed
as [21]:

MðτÞ ¼ M1

�
s
2

�
M2ðsÞM1

�
αs
2

�
M2ððα − 1ÞsÞ

×M1

�
αs
2

�
M2ðsÞM1

�
s
2

�
þOðτ5Þ; ð8Þ

where α ¼ 1 − 21=3, and s ¼ τ=ð1þ αÞ. An even higher
order accuracy integrator can be obtained following
Yoshida’s approach [22]. Assume that M2n denotes a
transfer map with an accuracy of order 2n, the transfer
map M2nþ2 with (2nþ 2)th order of accuracy can be
obtained from the recursion equation:

M2nþ2ðτÞ ¼ M2nðz0τÞM2nðz1τÞM2nðz0τÞ þOðτ2nþ3Þ;
ð9Þ

where z0 ¼ 1=ð2 − 21=ð2nþ1ÞÞ and z1 ¼ −21=ð2nþ1Þ=
ð2 − 21=ð2nþ1ÞÞ.
The above numerical integrator Eqs. (7)–(9) will be

symplectic if both the transfer map M1 and the transfer
map M2 are symplectic. A transfer map Mi is symplectic
if and only if the Jacobian matrix Mi of the transfer map
Mi satisfies the following condition:

MT
i JMi ¼ J; ð10Þ

where J denotes the 6N × 6N matrix given by:

J ¼
�

0 I

−I 0

�
ð11Þ

and I is the 3N × 3N identity matrix.
For the given Hamiltonian in Eq. (1), we can choose

H1 as:

H1 ¼
XNp

i¼1

p2
i =2þ

XNp

i¼1

qψðriÞ: ð12Þ

A single charged particle magnetic optics method can be
used to find a symplectic transfer map M1 for this
Hamiltonian with the external fields from most accelerator
beam line elements [19,20,23].

JI QIANG PHYS. REV. ACCEL. BEAMS 20, 014203 (2017)

014203-2



We can choose H2 as:

H2 ¼
1

2

XNp

i¼1

XNp

j¼1

qφðri; rjÞ; ð13Þ

which includes the space-charge effect and is only a
function of positions. For the space-charge Hamiltonian
H2ðrÞ, the single step transfer map M2 can be written as:

riðτÞ ¼ rið0Þ ð14Þ

piðτÞ ¼ pið0Þ −
∂H2ðrÞ
∂ri τ: ð15Þ

The Jacobi matrix of the above transfer map M2 is

M2 ¼
�

I 0

L I

�
; ð16Þ

where L is a 3N × 3N matrix. For M2 to satisfy the
symplectic condition Eq. (10), the matrix L needs to be
a symmetric matrix, i.e.

L ¼ LT: ð17Þ

Given the fact that Lij ¼ ∂piðτÞ=∂rj ¼ − ∂2H2ðrÞ∂ri∂rj τ, the

matrix L will be symmetric as long as it is analytically
calculated from the function H2. This is also called jolt-
factorization in nonlinear single particle beam dynamics
study [24]. If both the transfer map M1 and the transfer
mapM2 are symplectic, the numerical integrator Eqs. (7)–
(9) for multiparticle tracking will be symplectic. In the
following sections, we will derive the symplectic space-
charge transfer map of H2 for a two-dimensional coasting
beam and for a three-dimensional bunched beam.

III. SYMPLECTIC SPACE-CHARGE MAP
FOR A COASTING BEAM

In a coasting beam, the Hamiltonian H2 can be written
as [19]:

H2 ¼
K
2

XNp

i¼1

XNp

j¼1

φðri; rjÞ; ð18Þ

where K ¼ qI=ð2πϵ0p0v20γ
2
0Þ is the generalized perveance,

I is the beam current, ϵ0 is the dielectric constant in
vacuum, p0 is the momentum of the reference particle, v0 is
the speed of the reference particle, γ0 is the relativistic
factor of the reference particle, and φ is the space charge
Coulomb interaction potential. In this Hamiltonian, the
effects of the direct electric potential and the longitudinal
vector potential are combined together. The electric
Coulomb potential in the Hamiltonian H2 can be obtained
from the solution of the Poisson equation. In the following,

we assume that the coasting beam is inside a rectangular
perfectly conducting pipe. In this case, the two-dimensional
Poisson’s equation can be written as:

∂2ϕ

∂x2 þ
∂2ϕ

∂y2 ¼ −4πρ; ð19Þ

where ϕ is the electric potential, and ρ is the particle density
distribution of the beam.
The boundary conditions for the electric potential inside

the rectangular perfectly conducting pipe are:

ϕðx ¼ 0; yÞ ¼ 0 ð20Þ

ϕðx ¼ a; yÞ ¼ 0 ð21Þ

ϕðx; y ¼ 0Þ ¼ 0 ð22Þ

ϕðx; y ¼ bÞ ¼ 0; ð23Þ

where a is the horizontal width of the pipe and b is the
vertical width of the pipe.
Given the boundary conditions in Eqs. (20)–(23), the

electric potential ϕ and the source term ρ can be approxi-
mated using two sine functions as [25–29]:

ρðx; yÞ ¼
XNl

l¼1

XNm

m¼1

ρlm sinðαlxÞ sinðβmyÞ ð24Þ

ϕðx; yÞ ¼
XNl

l¼1

XNm

m¼1

ϕlm sinðαlxÞ sinðβmyÞ; ð25Þ

where

ρlm ¼ 4

ab

Z
a

0

Z
b

0

ρðx; yÞ sinðαlxÞ sinðβmyÞdxdy ð26Þ

ϕlm ¼ 4

ab

Z
a

0

Z
b

0

ϕðx; yÞ sinðαlxÞ sinðβmyÞdxdy; ð27Þ

where αl ¼ lπ=a and βm ¼ mπ=b. The above approxima-
tion follows the numerical spectral Galerkin method since
each basis function satisfies the boundary conditions on the
wall [25–27]. For a smooth function, this spectral approxi-
mation has an accuracy whose numerical error scales as
Oðexpð−cNÞÞ with c > 0, where N is the number of the
basis function (i.e., mode number in each dimension) used
in the approximation. By substituting above expansions
into the Poisson Eq. (19) and making use of the ortho-
normal condition of the sine functions, we obtain

ϕlm ¼ 4πρlm

γ2lm
ð28Þ

where γ2lm ¼ α2l þ β2m.
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In the multiparticle tracking, the particle distribution
function ρðx; yÞ can be represented as:

ρðx; yÞ ¼ 1

Np

XNp

j¼1

δðx − xjÞδðy − yjÞ; ð29Þ

where δ is the Dirac function. Using the above equation and
Eq. (26) and Eq. (28), we obtain:

ϕlm ¼ 4π

γ2lm

4

ab
1

Np

XNp

j¼1

sinðαlxjÞ sinðβmyjÞ ð30Þ

and the electric potential as:

ϕðx; yÞ ¼ 4π
4

ab
1

Np

XNp

j¼1

XNl

l¼1

XNm

m¼1

1

γ2lm
sinðαlxjÞ

× sinðβmyjÞ sinðαlxÞ sinðβmyÞ: ð31Þ

From the above electric potential, the interaction potential
φ between particles i and j can be written as:

φðxi; yi; xj; yjÞ ¼ 4π
4

ab
1

Np

XNl

l¼1

XNm

m¼1

1

γ2lm
sinðαlxjÞ

× sinðβmyjÞ sinðαlxiÞ sinðβmyiÞ: ð32Þ

Now, the space-charge Hamiltonian H2 can be written as:

H2 ¼ 4π
K
2

4

ab
1

Np

XNp

i¼1

XNp

j¼1

XNl

l¼1

XNm

m¼1

1

γ2lm
sinðαlxjÞ

× sinðβmyjÞ sinðαlxiÞ sinðβmyiÞ: ð33Þ

The one-step symplectic transfer map M2 of the particle i
with this Hamiltonian is given as:

pxiðτÞ ¼ pxið0Þ − τ4πK
4

ab
1

Np

XNp

j¼1

XNl

l¼1

XNm

m¼1

αl
γ2lm

× sinðαlxjÞ sinðβmyjÞ cosðαlxiÞ sinðβmyiÞ

pyiðτÞ ¼ pyið0Þ − τ4πK
4

ab
1

Np

XNp

j¼1

XNl

l¼1

XNm

m¼1

βm
γ2lm

× sinðαlxjÞ sinðβmyjÞ sinðαlxiÞ cosðβmyiÞ: ð34Þ

Here, both pxi and pyi are normalized by the
reference particle momentum p0. Using the symplectic
transfer map M1 for the external field Hamiltonian
H1 from an optics code and the transfer map M2,
one obtains a symplectic multiparticle tracking model
including the self-consistent space-charge effect fol-
lowing Eqs. (7)–(9).
As an illustration of above symplectic multiparticle

tracking model, we simulated a 1 GeV coasting proton
beam transporting through a rectangular perfectly con-
ducting pipe with a FODO lattice for transverse focusing.
The initial transverse density distribution is assumed to
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FIG. 1. Charge density distribution along the x axis.
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FIG. 2. Electric field on x axis from the above direct spectral solver (red) and from the 2nd order finite difference solver (green) (left),
and the normalized relative field difference (right).
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be a Gaussian function given in Fig. 1. We computed the
electric field along the x axis using the above direct
gridless spectral solver with 15 × 15 modes and the
electric field from a second order finite difference solver
with 129 × 129 grid points. The results are shown in
Fig. 2. The solution of the spectral solver agrees with that
of the finite difference solver very well with even 15 × 15
modes due to the fast convergence property of the
spectral method. The relative maximum field difference

(normalized by the maximum field amplitude) between
two solutions is below 2%. The use of the mode number
in this example is somewhat empirical. It depends on the
physical problem to be solved. If one knows about the
smallest spatial structure of the problem, one can choose
the mode number with the wavelength to resolve this
spatial structure. Without knowing the detailed structure
in the particle density distribution, one can use a trial-
and-error method until the appropriate solution is
attained.
Figure 3 shows the proton beam root-mean-square

(rms) envelope evolution through 20 FODO lattice
periods. The FODO lattice used in this example consists
of two quadrupoles and three drifts in a single period.
The total length of the period is 1 meter. The zero current
phase advance is about 87 degrees and the phase advance
with 100 A current is about 74 degrees. The relatively
low intensity beam used in this example is to avoid
space-charge driven resonance and to separate the
numerical emittance growth from the physical emittance
growth in the simulation.
The symplectic integrator is good for long term

tracking since it helps preserve phase space structure
during the numerical integration. Figure 4 shows the
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FIG. 3. RMS envelope evolution of the beam.
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FIG. 4. Stroboscopic plot (every 10 periods) of phase space evolution of a test particle from the symplectic-spectral model (top) and
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stroboscopic plots (every 10 periods) of x − px and
y − py phase space evolution of a test particle through
the last 20,000 periods of the total 100,000 lattice periods
including the self-consistent space-charge forces. As a
comparison, we also show in this figure the phase space
evolution of the same initial test particle using the
standard momentum conserved PIC method and the
second order finite difference solver for space-charge
calculation [19,30]. Qualitatively, these two models show
similar shapes in phase space. However, looking into the
details of the phase space, they have quite different
structures. The single particle phase space from the PIC
model shows a dense core while the phase space from the
symplectic multiparticle model shows a nearly hollow
core. Figure 5 shows the 4-dimensional emittance growth
ð ϵxϵx0

ϵy
ϵy0

− 1Þ% evolution from the symplectic model and

that from the PIC model. It is seen that the symplectic
model has a much smaller emittance growth than the PIC
model. This emittance growth is a numerical artifact due
to the small number of macroparticles (50,000) used in
the simulation, which was studied in Refs. [31–33]. The
small number of macroparticles introduces numerical
errors in the computing of the electric potential and
results in the artificial emittance growth. A more detailed
study of the numerical emittance growth associated with
this new method is underway and will be reported in a
future publication. The apparent nonzero emittance
growth at the beginning is due to the charge redistrib-
ution of the initial Gaussian distribution within a much
shorter time scale (not visible in the plot) compared with
the total plotting time scale of 100,000 periods.

IV. SYMPLECTIC SPACE-CHARGE MAP
FOR A 3D BUNCHED BEAM

In a 3D bunched beam, the Hamiltonian H2 can be
written as [34]:

H2 ¼
κγ0
2

XNp

i¼1

XNp

j¼1

φðri; rjÞ ð35Þ

where κ ¼ q=ðlmC2γ20β0Þ, l ¼ C=ω is the scaling length,
and β0 ¼ v0=C. The above Hamiltonian includes both the
electric potential and the longitudinal magnetic vector
potential. The electric potential in the beam frame can
be obtained from the solution of a three-dimensional
Poisson’s equation:

∂2ϕ

∂x2 þ
∂2ϕ

∂y2 þ
∂2ϕ

∂z2 ¼ −
ρ

ϵ0
; ð36Þ

where ρ is the charge density distribution in the beam
frame. The boundary conditions for the electric potential
inside the rectangular perfectly conducting pipe are

ϕðx ¼ 0; y; zÞ ¼ 0 ð37Þ

ϕðx ¼ a; y; zÞ ¼ 0 ð38Þ

ϕðx; y ¼ 0; zÞ ¼ 0 ð39Þ

ϕðx; y ¼ b; zÞ ¼ 0 ð40Þ

ϕðx; y; z ¼ −∞Þ ¼ 0 ð41Þ

ϕðx; y; z ¼ ∞Þ ¼ 0; ð42Þ

where a is the horizontal width of the pipe, b is the
vertical width of the pipe. The solution of the 3D Poisson
equation subject to the above boundary conditions was
studied with several numerical methods [28,29]. To
obtain a fast analytical solution of the electric potential
we use an artificial boundary condition in this study.
Here, the longitudinal open boundary condition is
approximated by a finite domain Dirichlet boundary
condition:

ϕðx; y; z ¼ 0Þ ¼ 0 ð43Þ

ϕðx; y; z ¼ cÞ ¼ 0 ð44Þ

where c is the length of the domain that is large enough
so that the electric potential goes to zero at both ends of
the domain. The choice of the length of the domain
depends on how fast the electric potential vanishes
outside the beam. From Ref. [29], we know that the
solution of the electric potential for each transverse mode
can be written as:

ϕlmðzÞ ¼ 1

2γlmϵ0

Z
∞

−∞
expð−γlmjz − z0jÞρlmðz0Þdz0; ð45Þ
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where γ2lm ¼ ðlπ=aÞ2 þ ðmπ=bÞ2. This solution decreases
exponentially as a function of z outside the beam. This
suggests that a short distance (in the unit of aperture size)
might be sufficient to have the electric potential approach
to zero.
Given the boundary conditions in Eqs. (37)–(44), the

electric potential ϕ and the source term ρ can be approxi-
mated using three sine functions as:

ρðx; y; zÞ ¼
XNl

l¼1

XNm

m¼1

XNn

n¼1

ρlmn sinðαlxÞ sinðβmyÞ sinðγnzÞ

ð46Þ

ϕðx; y; zÞ ¼
XNl

l¼1

XNm

m¼1

XNn

n¼1

ϕlmn sinðαlxÞ sinðβmyÞ sinðγnzÞ;

ð47Þ

where

ρlmn ¼ 8

abc

Z
a

0

Z
b

0

Z
c

0

ρðx; y; zÞ sinðαlxÞ sinðβmyÞ

× sinðγnzÞdxdydz ð48Þ

ϕlmn ¼ 8

abc

Z
a

0

Z
b

0

Z
c

0

ϕðx; y; zÞ sinðαlxÞ sinðβmyÞ

× sinðγnzÞdxdydz; ð49Þ

where αl ¼ lπ=a, βm ¼ mπ=b, γn ¼ nπ=c. Substituting
the above expansions into the Poisson Eq. (36) and making
use of the orthonormal condition of the sine functions,
we obtain

ϕlmn ¼ ρlmn

ϵ0Γ2
lmn

; ð50Þ

where Γ2
lmn ¼ α2l þ β2m þ γ2n.

In the multiparticle tracking, the charge density ρðx; y; zÞ
can be represented as:

ρðx; y; zÞ ¼
XNp

j¼1

wδðx − xjÞδðy − yjÞδðz − zjÞ; ð51Þ

where w is the charge weight of each individual particle and
δ is the Dirac function. Using the above equation and
Eq. (48) and Eq. (50), we obtain:

ϕlmn ¼ 1

ϵ0Γ2
lmn

8

abc
w
XNp

j¼1

sinðαlxjÞ sinðβmyjÞ sinðγnzjÞ

ð52Þ

and the electric potential as:

ϕðx; y; zÞ ¼ 1

ϵ0

8

abc
w
XNp

j¼1

XNl

l¼1

XNm

m¼1

XNn

n¼1

1

Γ2
lmn

sinðαlxjÞ sinðβmyjÞ sinðγnzjÞ sinðαlxÞ sinðβmyÞ sinðγnzÞ: ð53Þ

From the above electric potential, we obtain the interaction potential between particles i and j as:

φðxi; yi; zi; xj; yj; zjÞ ¼
1

ϵ0

8

abc
w
XNl

l¼1

XNm

m¼1

XNn

n¼1

1

Γ2
lmn

sinðαlxjÞ sinðβmyjÞ sinðγnzjÞ sinðαlxiÞ sinðβmyiÞ sinðγnziÞ: ð54Þ

Given a particle’s spatial coordinates ðxi; yi; θiÞ in the laboratory frame, the particle spatial coordinates in the beam frame
ðxi; yi; ziÞ can be obtained under the following approximation:

zi ¼ −lγ0β0θi: ð55Þ

Now, the space-charge Hamiltonian H2 can be written as:

H2 ¼
1

2ϵ0

8

abc
wκγ0

XNp

i¼1

XNp

j¼1

XNl

l¼1

XNm

m¼1

XNn

n¼1

1

Γ2
lmn

sinðαlxjÞ sinðβmyjÞ sinð−γnlγ0β0θjÞ sinðαlxiÞ sinðβmyiÞ sinð−γnlγ0β0θiÞ:

ð56Þ

The one-step symplectic transfer map M2 of the particle i with this Hamiltonian is given as:
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pxiðτÞ ¼ pxið0Þ − τ
1

ϵ0

8

abc
wlκγ0

XNp

j¼1

XNl

l¼1

XNm

m¼1

XNn

n¼1

αl
Γ2
lmn

sinðαlxjÞ sinðβmyjÞ sinð−γnlγ0β0θjÞ cosðαlxiÞ sinðβmyiÞ

× sinð−γnlγ0β0θiÞ

pyiðτÞ ¼ pyið0Þ − τ
1

ϵ0

8

abc
wlκγ0

XNp

j¼1

XNl

l¼1

XNm

m¼1

XNn

n¼1

βm
Γ2
lmn

sinðαlxjÞ sinðβmyjÞ sinð−γnlγ0β0θjÞ sinðαlxiÞ cosðβmyiÞ

× sinð−γnlγ0β0θiÞ

ptiðτÞ ¼ ptið0Þ þ τ
1

ϵ0

8

abc
wlκγ20β0

XNp

j¼1

XNl

l¼1

XNm

m¼1

XNn

n¼1

γn
Γ2
lmn

sinðαlxjÞ sinðβmyjÞ sinð−γnlγ0β0θjÞ sinðαlxiÞ

× sinðβmyiÞ cosð−γnlγ0β0θiÞ; ð57Þ

where both pxi and pyi are normalized by mC.
As an illustration of the above symplectic model, we

simulated a 1 GeV, 3D bunched proton beam transporting
through a periodic focusing channel. The initial transverse
and longitudinal density profiles of the beam are shown in
Fig. 6. The beam has a 3D Gaussian distribution with a

longitudinal to transverse aspect ratio of three. Figure 7
shows the relative transverse electric field difference along
the x-axis and the longitudinal electric field difference
along the z-axis using above gridless spectral method with
15 × 15 × 15 modes and using a spectral-finite difference
solver [28] with 129 × 129 × 257 grid points. It is seen that
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FIG. 6. The transverse (left) and longitudinal (right) density profiles of a 3D bunched beam.
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even with only 15 modes in each direction, the gridless
spectral solver produces space charge fields in good
agreement with the fields from the spectral-finite difference
solver with finer resolution. The relative maximum field
differences (normalized by the maximum field amplitude
along the axis) are below 2% in both directions.
Figure 8 shows the transverse and the longitudinal rms

envelope evolution through a periodic focusing channel.
Each period of the focusing channel consists of two
transverse uniform focusing elements, two longitudinal
uniform focusing elements, and four drifts. The total length
of the period is one meter. The zero current phase advance
in a single period is about 86 degrees in the transverse
dimension and 40 degrees in the longitudinal direction. The
phase advance with 0.1 A average current at 100 MHz rf
frequency is about 81 degrees in the transverse direction
and 39 degrees in the longitudinal direction.
Figure 9 shows the six-dimensional rms emittance

growth ð ϵxϵx0
ϵy
ϵy0

ϵz
ϵz0

− 1Þ% evolution through the periodic

focusing channel from the above symplectic gridless
spectral model and from the standard PIC method with
the spectral-finite difference Poisson solver. It is seen that

the symplectic spectral model gives much less numerical
emittance growth than the standard PIC method in the
simulation using 160,000 macroparticles.

V. COMPUTATIONAL COMPLEXITY

The gridless symplectic multiparticle spectral model can
be used for long-term tracking study including space-
charge effects. The computational complexity of this model
scales as OðNmode × NpÞ, where Nmode is the total number
of modes. The standard PIC model can have a computa-
tional cost ofOðNpÞ þOðNgrid logNgridÞ when an efficient
Poisson solver is used, where Ngrid is the total number of
grid points. This suggests that the PIC model would be
faster than the symplectic multiparticle spectral model on a
single processor computer. However, the symplectic multi-
particle spectral model is very easy to be parallelized on a
multiprocessor computer. One can distribute all macro-
particles uniformly across processors to achieve a perfect
load balance. By using a spectral method with exponen-
tially decreasing errors, the number of modes Nmode can be
kept within a relatively small number, which significantly
improves the computing speed. Figure 10 shows the
parallel speedup of the symplectic multiparticle spectral
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model as a function of the number of processors for a fixed
problem size, i.e. ∼50; 000 macroparticles and 15 × 15
modes in the 2D model and ∼160; 000 macroparticles and
15 × 15 × 15 modes in the 3D model. It is seen that the
speedup increases almost linearly for both models. This is
because both models have perfect load balance among all
processors. The only communication involved in these
models is a global reduction operation to obtain the density
distribution in the frequency domain. The decrease of the
speedup in the 2D case might be due to the specific
computer architecture used in this timing study, which has
24 shared memory computing cores inside a node. Outside
the node, the communication among processors (cores)
is slowed down due to the across node communication.
The above scaling results show that the symplectic multi-
particle spectral space-charge tracking model can have a
good scalability on multiprocessor parallel computers and
is especially suitable for tracking simulations on large scale
supercomputers or GPU computers.

VI. CONCLUSIONS

In this paper, we proposed a new symplectic multi-
particle tracking model for self-consistent space-charge
simulation. This model uses a gridless spectral method to
calculate the space-charge potential and while avoiding the
error associated with numerical grid in the standard PIC
model. It also shows much less numerical noise driven
emittance growth than the PIC method for long term
simulation. Even though the computational cost of the
symplectic spectral model is higher than the PIC method on
a single processor computer, the proposed model scales
well on multiprocessor parallel computers. It has a perfect
load balance and uniform data structure, which is suitable
for GPU parallel implementation. The new symplectic
multiparticle spectral model enables researchers to carry
out long term tracking studies including space-charge
effects.
The symplectic space-charge transfer map presented in

this paper assumes a rectangular perfectly conducting
pipe. A transverse open boundary condition might be
approximated using this model by moving the conducting
wall away from the beam. For a general boundary
condition, it is quite difficult to obtain an analytical
expression of the electric potential from an arbitrary
density distribution. For a round perfectly conducting
pipe, a Fourier mode and a Bessel mode might be used to
approximate the particle density distribution and the
electric potential of the Poisson equation in a cylindric
coordinate system [28]. However, it takes more time to
compute the Bessel function expansion than the simple
sine function expansion.
The symplectic space-charge model presented here also

assumes a straight conducting pipe. A study of the solution
of the Poisson equation in a bended conducting pipe using
the Frenet-Serret coordinate was done in Ref. [35] and

shows that for a large normalized bending radius (bending
radius/transverse aperture size), e.g. 100, there is barely any
difference between the straight pipe solution and the
bended pipe solution. This condition (large normalized
bending radius) can be satisfied in most circular acceler-
ators. Thus, the symplectic space-charge model in this
paper can still be used for space-charge simulation in
circular machines.
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