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Space-charge effects play an important role in high intensity particle accelerators and were studied using a
variety of macroparticle tracking models. In this paper, we propose a symplectic particle-in-cell (PIC) model
and compare this model with a recently published symplectic gridless particle model and a conventional
nonsymplectic PIC model for long-term space-charge simulation of a coasting beam. Using the same step
size and the same number of modes for the space-charge Poisson solver, all three models show qualitatively
similar emittance growth evolutions and final phase space shapes in the benchmark examples. Quanti-
tatively, the symplectic PIC and the symplectic gridless particle models agree with each other very well,
while the nonsymplectic PIC model yields different emittance growth value. Using finer step size, the
emittance growth from the nonsymplectic PIC converges towards that from the symplectic PIC model.
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I. INTRODUCTION

The nonlinear space-charge effects from particle inter-
actions inside a charged particle beam play an important
role in high-intensity accelerators. Avariety of models have
been developed to simulate the space-charge effects [1–13].
Among those models, the particle-in-cell (PIC) model is
probably the most widely used model in the accelerator
community. The particle-in-cell model is an efficient model
to handle the space-charge effects self-consistently. It uses a
computational grid to obtain the charge density distribution
from a finite number of macroparticles and solves the
Poisson equation on the grid at each time step. The
computational cost is linearly proportional to the number
of macroparticles, which makes the simulation fast for
many applications. However, those grid-based, momentum
conserved, PIC codes do not satisfy the symplectic con-
dition of classic multiparticle dynamics. Violating the
symplectic condition in multiparticle tracking might not
be an issue in a single pass system such as a linear
accelerator. But in a circular accelerator, violating the
symplectic condition may result in undesired numerical
errors in the long-term tracking simulation. Recently, a
symplectic gridless particle model was proposed for self-
consistent space-charge simulation [14]. This model is easy
to implement and has a good scalability on massive parallel

computers. However, the computational cost of this model
is proportional to the number of macroparticles times the
number of modes used to solve the Poisson equation. When
the number of modes is large, this model becomes quite
computationally expensive and one has to resort to parallel
computers.
In this paper, we propose a symplectic PIC model for

self-consistent space-charge long-term simulation. This
model has the advantages of the computational efficiency
of the PIC method and the symplectic property needed for
long-term dynamics tracking. The multisymplectic par-
ticle-in-cell model was proposed to study the Vlasov-
Maxwell system in plasmas using a variational method
[15–18]. A symplectic gridless spectral electrostatic model
in a periodic plasma was also proposed following the
variational method [19]. To the best of our knowledge,
at present, there is no symplectic PIC model that was
proposed and shown applications for the quasistatic
Vlasov-Poisson system in the space-charge beam dynamics
study. In this paper, we derived a symplectic PIC model
directly from the multiparticle Hamiltonian. We then
carried out long-term space-charge simulations and com-
pared this model with the symplectic gridless particle
model and the nonsymplectic PIC model in two beam
dynamics applications.
The organization of this paper is as follows: After the

Introduction, we present the symplectic multiparticle
tracking model including the space-charge effect in
Sec. II. We present the nonsymplectic PIC model in
Sec. III. In Sec. IV, we compare the symplectic PIC model,
the symplectic gridless particle model, and the non-
symplectic PIC model with two space-charge simulation
examples. Finally, in Sec. V we draw conclusions.
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II. SYMPLECTIC MULTIPARTICLE
TRACKING MODELS

In the accelerator beam dynamics simulation, for a multi-
particle system with Np charged particles subject to both a
space-charge self-field and an external field, an approximate
Hamiltonian of the system can be written as [20–22]

H ¼
XNp

i¼1

p2
i =2þ

1

2

XNp

i¼1

XNp

j¼1

qφ̄ðri; rjÞ þ
XNp

i¼1

qψðriÞ ð1Þ

where Hðr1; r2;…; rNp
;p1;p2;…;pNp

; sÞ denotes the
Hamiltonian of the system using distance s as an independent
variable, φ̄ is the space-charge interaction potential (includ-
ing both the direct electric potential and the longitudinal
vector potential) between the charged particles i and j
(subject to appropriate boundary conditions), ψ denotes
the potential associated with the external field, ri ¼
ðxi; yi; θi ¼ ωΔtÞ denotes the normalized canonical spatial
coordinates of particle i, pi ¼ ðpxi; pyi; pti ¼ −ΔE=mc2Þ
the normalized canonical momentum coordinates of particle
i, andω the reference angular frequency,Δt the time of flight
to location s, ΔE the energy deviation with respect to the
reference particle, m the rest mass of the particle, and c the
speed of light invacuum.The equations governing themotion
of individual particle i follow the Hamilton’s equations as

dri
ds

¼ ∂H
∂pi

; ð2Þ

dpi

ds
¼ −

∂H
∂ri : ð3Þ

Let ζ denote a6N vector of coordinates; the aboveHamilton’s
equation can be rewritten as

dζ
ds

¼ −½H; ζ� ð4Þ

where [,] is the Poisson bracket. A formal solution for above
equation after a single step τ can be written as

ζðτÞ ¼ exp½−τð∶H∶Þ�ζð0Þ: ð5Þ

Here, we have defined a differential operator ∶H∶ as
∶H∶g ¼ ½H; g�, for arbitrary function g. For a Hamiltonian
that can be written as a sum of two terms H ¼ H1 þH2, an
approximate solution to the above formal solution can be
written as [23]

ζðτÞ ¼ expð−τð∶H1∶þ ∶H2∶ÞÞζð0Þ

¼ exp

�
−
1

2
τ∶H1∶

�
expð−τ∶H2∶Þ

× exp

�
−
1

2
τ∶H1∶

�
ζð0Þ þOðτ3Þ: ð6Þ

Letting expð− 1
2
τ∶H1∶Þ define a transfer map M1 and

expð−τ∶H2∶Þ a transfer map M2, for a single step, the
above splitting results in a second-order numerical integrator
for the original Hamilton’s equation as

ζðτÞ ¼ MðτÞζð0Þ
¼ M1ðτ=2ÞM2ðτÞM1ðτ=2Þζð0Þ þOðτ3Þ: ð7Þ

The above numerical integrator can be extended to
fourth-order accuracy and arbitrary even-order accuracy
following Yoshida’s approach [24]. This numerical inte-
grator Eq. (7) will be symplectic if both the transfer map
M1 and the transfer map M2 are symplectic. A transfer
mapMi is symplectic if and only if the Jacobian matrixMi
of the transfer map Mi satisfies the following condition:

MT
i JMi ¼ J ð8Þ

where J denotes the 6N × 6N matrix given by

J ¼
�

0 I

−I 0

�
ð9Þ

and I is the 3N × 3N identity matrix.
For the Hamiltonian in Eq. (1), we can choose H1 as

H1 ¼
XNp

i¼1

p2
i =2þ

XNp

i¼1

qψðriÞ: ð10Þ

This corresponds to the Hamiltonian of a group of charged
particles inside an external field without mutual interaction
among themselves. A single-charged particle magnetic
optics method can be used to find the symplectic transfer
map M1 for this Hamiltonian with the external fields from
most accelerator beam line elements [21,22,25].
We can choose H2 as

H2 ¼
1

2

XNp

i¼1

XNp

j¼1

qφ̄ðri; rjÞ ð11Þ

which includes the space-charge effect and is only a
function of position. For the space-charge Hamiltonian
H2ðrÞ, the single step transfer map M2 can be written as

riðτÞ ¼ rið0Þ; ð12Þ

piðτÞ ¼ pið0Þ −
∂H2ðrÞ
∂ri τ: ð13Þ

The Jacobi matrix of the above transfer map M2 is

M2 ¼
�

I 0

L I

�
ð14Þ
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where L is a 3N × 3N matrix. For M2 to satisfy the
symplectic condition Eq. (8), the matrix L needs to be a
symmetric matrix, i.e.

L ¼ LT: ð15Þ

Given the fact that Lij ¼ ∂piðτÞ=∂rj ¼ − ∂2H2ðrÞ∂ri∂rj τ, the

matrix L will be symmetric as long as it is analytically
calculated from the function H2. This is also called jolt
factorization in the nonlinear single particle beam dynamics
study [26]. If both the transfer map M1 and the transfer
map M2 are symplectic, the numerical integrator Eq. (7)
for multiparticle tracking will be symplectic.
For a coasting beam, the Hamiltonian H2 can be written

as [21]

H2 ¼
K
2

XNp

i¼1

XNp

j¼1

φðri; rjÞ ð16Þ

where K ¼ qI=ð2πϵ0p0v20γ
2
0Þ is the generalized perveance,

I is the beam current, ϵ0 is the permittivity of vacuum, p0 is
the momentum of the reference particle, v0 is the speed
of the reference particle, γ0 is the relativistic factor of the
reference particle, and φ is the space charge Coulomb
interaction potential. In this Hamiltonian, the effects of the
direct Coulomb electric potential and the longitudinal
vector potential are combined together. The electric
Coulomb potential φ in the Hamiltonian H2 can be
obtained from the solution of the Poisson equation. In
the following, we assume that the coasting beam is inside a
rectangular perfectly conducting pipe. In this case, the two-
dimensional Poisson’s equation can be written as

∂2ϕ

∂x2 þ
∂2ϕ

∂y2 ¼ −4πρ ð17Þ

where ϕ is the electric potential, and ρ is the particle density
distribution of the beam.
The boundary conditions for the electric potential inside

the rectangular perfectly conducting pipe are

ϕðx ¼ 0; yÞ ¼ 0; ð18Þ

ϕðx ¼ a; yÞ ¼ 0; ð19Þ

ϕðx; y ¼ 0Þ ¼ 0; ð20Þ

ϕðx; y ¼ bÞ ¼ 0; ð21Þ

where a is the horizontal width of the pipe and b is the
vertical width of the pipe.
Given the boundary conditions in Eqs. (18)–(21),

the electric potential ϕ and the source term ρ can be
approximated using two sine functions as [27–31]

ρðx; yÞ ¼
XNl

l¼1

XNm

m¼1

ρlm sinðαlxÞ sinðβmyÞ; ð22Þ

ϕðx; yÞ ¼
XNl

l¼1

XNm

m¼1

ϕlm sinðαlxÞ sinðβmyÞ; ð23Þ

where

ρlm ¼ 4

ab

Z
a

0

Z
b

0

ρðx; yÞ sinðαlxÞ sinðβmyÞdxdy; ð24Þ

ϕlm ¼ 4

ab

Z
a

0

Z
b

0

ϕðx; yÞ sinðαlxÞ sinðβmyÞdxdy; ð25Þ

where αl ¼ lπ=a and βm ¼ mπ=b. The above approxima-
tion follows the numerical spectral Galerkin method since
each basis function satisfies the boundary conditions on the
wall [27–29]. For a smooth function, this spectral approxi-
mation has an accuracy whose numerical error scales as
O½expð−cNÞ� with c > 0, where N is the number of the
basis function (i.e. mode number in each dimension) used
in the approximation. By substituting the above expansions
into the Poisson Eq. (17) and making use of the ortho-
normal condition of the sine functions, we obtain

ϕlm ¼ 4πρlm

γ2lm
ð26Þ

where γ2lm ¼ α2l þ β2m.
In the simulation, the particle density distribution func-

tion ρðx; yÞ can be represented as

ρðx; yÞ ¼ 1

ΔxΔyNp

XNp

j¼1

Sðx − xjÞSðy − yjÞ ð27Þ

where SðxÞ is the unitless shape function (also called
deposition function in the PIC model) and Δx and Δy
are mesh size in each dimension. The use of the shape
function can help smooth the density function when the
number of macroparticles in the simulation is much less
than the real number of particles in the beam. Using the
above equation and Eqs. (24) and (26), we obtain

ϕlm ¼ 4π

γ2lm

4

ab
1

Np

XNp

j¼1

1

ΔxΔy

Z
a

0

Z
b

0

Sðx − xjÞSðy − yjÞ

× sinðαlxÞ sinðβmyÞdxdy ð28Þ

and the electric potential as
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ϕðx; yÞ ¼ 4π
4

ab
1

Np

XNp

j¼1

XNl

l¼1

XNm

m¼1

1

γ2lm
sinðαlxÞ sinðβmyÞ

1

ΔxΔy

Z
a

0

Z
b

0

Sðx̄ − xjÞSðȳ − yjÞ sinðαlx̄Þ sinðβmȳÞdx̄dȳ: ð29Þ

The electric potential at a particle i location can be obtained from the potential as

ϕðxi; yiÞ ¼
1

ΔxΔy

Z
a

0

Z
b

0

ϕðx; yÞSðx − xiÞSðy − yiÞdxdy

¼ 4π
4

ab
1

Np

XNp

j¼1

XNl

l¼1

XNm

m¼1

1

γ2lm

1

ΔxΔy

Z
a

0

Z
b

0

Sðx − xiÞSðy − yiÞ sinðαlxÞ sinðβmyÞdxdy

×
1

ΔxΔy

Z
a

0

Z
b

0

Sðx − xjÞSðy − yjÞ sinðαlxÞ sinðβmyÞdxdy ð30Þ

where the interpolation function to the particle location is assumed to be the same as the deposition function.
From the above electric potential, the interaction potential φ between particles i and j can be written as

φðxi; yi; xj; yjÞ ¼ 4π
4

ab
1

Np

XNl

l¼1

XNm

m¼1

1

γ2lm

1

ΔxΔy

Z
a

0

Z
b

0

Sðx − xjÞSðy − yjÞ sinðαlxÞ sinðβmyÞdxdy

×
1

ΔxΔy

Z
a

0

Z
b

0

Sðx − xiÞSðy − yiÞ sinðαlxÞ sinðβmyÞdxdy: ð31Þ

Now, the space-charge Hamiltonian H2 can be written as

H2 ¼ 4π
K
2

4

ab
1

Np

XNp

i¼1

XNp

j¼1

XNl

l¼1

XNm

m¼1

1

γ2lm

1

ΔxΔy

Z
a

0

Z
b

0

Sðx − xjÞSðy − yjÞ sinðαlxÞ sinðβmyÞdxdy

×
1

ΔxΔy

Z
a

0

Z
b

0

Sðx − xiÞSðy − yiÞ sinðαlxÞ sinðβmyÞdxdy: ð32Þ

A. Symplectic gridless particle model

In the symplectic gridless particle space-charge model, the shape function is assumed to be a Dirac delta function and the
particle distribution function ρðx; yÞ can be represented as

ρðx; yÞ ¼ 1

Np

XNp

j¼1

δðx − xjÞδðy − yjÞ: ð33Þ

Now, the space-charge Hamiltonian H2 can be written as

H2 ¼ 4π
K
2

4

ab
1

Np

XNp

i¼1

XNp

j¼1

XNl

l¼1

XNm

m¼1

1

γ2lm
sinðαlxjÞ sinðβmyjÞ sinðαlxiÞ sinðβmyiÞ: ð34Þ

The one-step symplectic transfer map M2 of the particle i with this Hamiltonian is given as

pxiðτÞ ¼ pxið0Þ − τ4πK
4

ab
1

Np

XNp

j¼1

XNl

l¼1

XNm

m¼1

αl
γ2lm

sinðαlxjÞ sinðβmyjÞ cosðαlxiÞ sinðβmyiÞ;

pyiðτÞ ¼ pyið0Þ − τ4πK
4

ab
1

Np

XNp

j¼1

XNl

l¼1

XNm

m¼1

βm
γ2lm

sinðαlxjÞ sinðβmyjÞ sinðαlxiÞ cosðβmyiÞ: ð35Þ

Here, both pxi and pyi are normalized by the reference particle momentum p0.
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B. Symplectic particle-in-cell model

If the deposition/interpolation shape function is not a delta function, the one-step symplectic transfer map M2 of the
particle i with this space-charge Hamiltonian H2 is given as

pxiðτÞ ¼ pxið0Þ − τ4πK
4

ab
1

Np

XNp

j¼1

XNl

l¼1

XNm

m¼1

1

γ2lm

1

ΔxΔy

Z
a

0

Z
b

0

Sðx − xjÞSðy − yjÞ sinðαlxÞ sinðβmyÞdxdy

×
1

ΔxΔy

Z
a

0

Z
b

0

∂Sðx − xiÞ
∂xi Sðy − yiÞ sinðαlxÞ sinðβmyÞdxdy;

pyiðτÞ ¼ pyið0Þ − τ4πK
4

ab
1

Np

XNp

j¼1

XNl

l¼1

XNm

m¼1

1

γ2lm

1

ΔxΔy

Z
a

0

Z
b

0

Sðx − xjÞSðy − yjÞ sinðαlxÞ sinðβmyÞdxdy

×
1

ΔxΔy

Z
a

0

Z
b

0

Sðx − xiÞ
∂Sðy − yiÞ

∂yi sinðαlxÞ sinðβmyÞdxdy; ð36Þ

where both pxi and pyi are normalized by the reference particle momentum p0, and S0ðxÞ is the first derivative of the shape
function. Assuming that the shape function is a compact local function with respect to the computational grid, the integral in
the above map can be approximated as

pxiðτÞ ¼ pxið0Þ − τ4πK
4

ab
1

Np

XNp

j¼1

XNl

l¼1

XNm

m¼1

1

γ2lm

X
I0

X
J0

SðxI0 − xjÞSðyJ0 − yjÞ sinðαlxI0 Þ sinðβmyJ0 Þ

×
X
I

X
J

∂SðxI − xiÞ
∂xi SðyJ − yiÞ sinðαlxIÞ sinðβmyJÞ;

pyiðτÞ ¼ pyið0Þ − τ4πK
4

ab
1

Np

XNp

j¼1

XNl

l¼1

XNm

m¼1

1

γ2lm

X
I0

X
J0

SðxI0 − xjÞSðyJ0 − yjÞ sinðαlxI0 Þ sinðβmyJ0 Þ

×
X
I

X
J

SðxI − xiÞ
∂SðyI − yiÞ

∂yi sinðαlxIÞ sinðβmyJÞ; ð37Þ

where the integers I, J, I0, and J0 denote the two-dimensional computational grid index, and the summations with respect to
those indices are limited to the range of a few local grid points depending on the specific deposition function. If one defines
the density related function ρ̄ðxI0 ; yJ0 Þ on the grid as

ρ̄ðxI0 ; yJ0 Þ ¼
1

Np

XNp

j¼1

SðxI0 − xjÞSðyJ0 − yjÞ; ð38Þ

the space-charge map can be rewritten as

pxiðτÞ ¼ pxið0Þ − τ4πK
X
I

X
J

∂SðxI − xiÞ
∂xi SðyJ − yiÞ

×

�
4

ab

XNl

l¼1

XNm

m¼1

1

γ2lm

X
I0

X
J0

ρ̄ðxI0 ; yJ0 Þ sinðαlxI0 Þ sinðβmyJ0 Þ sinðαlxIÞ sinðβmyJÞ
�
;

pyiðτÞ ¼ pyið0Þ − τ4πK
X
I

X
J

SðxI − xiÞ
∂SðyI − yiÞ

∂yi

×

�
4

ab

XNl

l¼1

XNm

m¼1

1

γ2lm

X
I0

X
J0

ρ̄ðxI0 ; yJ0 Þ sinðαlxI0 Þ sinðβmyJ0 Þ sinðαlxIÞ sinðβmyJÞ
�
: ð39Þ
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It turns out that the expression inside the bracket represents the solution of potential on grid using the charge density on grid,
which can be written as

ϕðxI; yJÞ ¼
4

ab

XNl

l¼1

XNm

m¼1

1

γ2lm

X
I0

X
J0

ρ̄ðxI0 ; yJ0 Þ sinðαlxI0 Þ sinðβmyJ0 Þ sinðαlxIÞ sinðβmyJÞ: ð40Þ

Then the above space-charge map can be rewritten in a more concise format as

pxiðτÞ ¼ pxið0Þ − τ4πK
X
I

X
J

∂SðxI − xiÞ
∂xi SðyJ − yiÞϕðxI; yJÞ;

pyiðτÞ ¼ pyið0Þ − τ4πK
X
I

X
J

SðxI − xiÞ
∂SðyJ − yiÞ

∂yi ϕðxI; yJÞ: ð41Þ

In the PIC literature, some compact function such as linear function and quadratic function is used in the simulation. For
example, a quadratic shape function can be written as [32,33]

SðxI − xiÞ ¼

8>><
>>:

3
4
− ðxi−xIΔx Þ2; jxi − xIj ≤ Δx=2;

1
2

�
3
2
− jxi−xI j

Δx

�
2
; Δx=2< jxi − xIj ≤ 3=2Δx;

0 otherwise;

ð42Þ

∂SðxI − xiÞ
∂xi ¼

8>>>>><
>>>>>:

−2ðxi−xIΔx Þ=Δx; jxi − xIj ≤ Δx=2;

ð− 3
2
þ ðxi−xIÞ

Δx Þ=Δx; Δx=2 < jxi − xIj ≤ 3=2Δx; xi > xI;

ð3
2
þ ðxi−xIÞ

Δx Þ=Δx; Δx=2 < jxi − xIj ≤ 3=2Δx; xi ≤ xI;

0 otherwise:

ð43Þ

The same shape function and its derivative can be applied to
the y dimension.
Using the symplectic transfer map M1 for the external

field Hamiltonian H1 from a magnetic optics code and
the transfer map M2 for space-charge Hamiltonian H2,
one obtains a symplectic PIC model including the self-
consistent space-charge effects.

III. NONSYMPLECTIC
PARTICLE-IN-CELL MODEL

In the nonsymplectic PIC model, for a coasting beam, the
equations governing the motion of individual particle i
follow the Lorentz equations as

dri
ds

¼ pi; ð44Þ

dpi

ds
¼ qðEi=v0 − az × BiÞ; ð45Þ

where r ¼ ðx; yÞ, p ¼ ðvx=v0; vy=v0Þ, and az is a unit
vector in the longitudinal z direction.
The above equations can be solved using a second-

order leap-frog algorithm, which is widely used in many

FIG. 2. Four-dimensional emittance growth evolution from
the symplectic gridless particle model (red), the symplectic
PIC model (green), and the nonsymplectic spectral PIC (blue).FIG. 1. Schematic plot of a FODO lattice.
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dynamics simulations. Here, for each step, the positions of
a particle i are advanced a half step by

rðτ=2Þi ¼ rð0Þi þ
1

2
τpið0Þ: ð46Þ

Then the momenta of the particle are advanced a full step
including the forces from the given external fields and the
self-consistent space-charge fields. In the PIC model, the
space-charge fields are obtained by solving the Poisson
equation on a computational grid and then interpolating
back to the particle location. In this study, we employ the
above spectral method to attain the space-charge fields as

FIG. 3. Final transverse phase space from the symplectic PIC model (top), from the symplectic gridless particle model (middle), and
from the nonsymplectic spectral PIC model (bottom).
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ExðxI; yJÞ ¼ −
4

ab

XNl

l¼1

XNm

m¼1

αl
γ2lm

X
I0

X
J0

ρðxI0 ; yJ0 Þ sinðαlxI0 Þ

× sinðβmyJ0 Þ cosðαlxIÞ sinðβmyJÞ; ð47Þ

EyðxI; yJÞ ¼ −
4

ab

XNl

l¼1

XNm

m¼1

βm
γ2lm

X
I0

X
J0

ρðxI0 ; yJ0 Þ sinðαlxI0 Þ

× sinðβmyJ0 Þ sinðαlxIÞ cosðβmyJÞ; ð48Þ

where the charge density ρðxI0 ; yJ0 Þ on the grid is obtained
following the charge deposition Eq. (38). The particle
momenta can then be advanced one step using

pxiðτÞ¼pxið0Þþτ

�
qEext

x

v0
−qBext

y

�

þτ4πK
X
I

X
J

SðxI−xiÞSðyJ−yiÞExðxI;yJÞ;

pyiðτÞ¼pyið0Þþτ

�
qEext

y

v0
þqBext

x

�

þτ4πK
X
I

X
J

SðxI−xiÞSðyJ−yiÞEyðxI;yJÞ: ð49Þ

Here, both the direct electric Coulomb field and the
magnetic field from the longitudinal vector potential are
included in the space-charge force term of the above
equation. Then, the positions of the particle are advanced
another half step using the new momenta as

rðτÞi ¼ rðτ=2Þi þ
1

2
τpiðτÞ: ð50Þ

This procedure is repeated many steps during the
simulation.

IV. BENCHMARK EXAMPLES

In this section, we tested and compared the symplectic
PIC model with the symplectic gridless particle model
and the nonsymplectic PIC model using two application
examples. In both examples, the beam experienced strong
space-charge driven resonance. It was tracked including
self-consistent space-charge effects for several hundred
thousands of lattice periods using the above three models.
In the first example, we simulated a 1 GeV coasting

proton beam transport through a linear periodic quadrupole
focusing and defocusing (FODO) channel inside a rectan-
gular perfectly conducting pipe. A schematic plot of the
lattice is shown in Fig. 1. It consists of a 0.1 m focusing
quadrupole magnet and a 0.1 m defocusing quadrupole
magnet with a single period. The total length of the period
is 1 meter. The zero current phase advance through one

FIG. 4. Final horizontal (left) and vertical (right) density profiles from the symplectic gridless particle model (red), the symplectic PIC
model (green), and the nonsymplectic spectral PIC (blue).

FIG. 5. Four-dimensional emittance growth evolution from the
symplectic PIC model (red), the nonsymplectic spectral PIC with
the nominal step size (green), the spectral PIC with half of the
nominal step size (blue), and the spectral PIC with one quarter of
the nominal step size (pink).
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lattice period is 85°. The current of the beam is 450 A and
the depressed phase advance is 42°. Such a high current
drives the beam across the fourth-order collective insta-
bility [34]. The initial transverse normalized emittance of
the proton beam is 1 μm with a 4D Gaussian distribution.
Figure 2 shows the four-dimensional emittance growth

ð ϵxϵx0
ϵy
ϵy0

− 1Þ% evolution through 200 000 lattice periods

from the symplectic gridless particle model, from the
symplectic PIC model, and from the nonsymplectic spectral
PIC model. These simulations used about 50 000 macro-
particles and 15 × 15 modes in the spectral Poisson solver.
In both PIC models, 257 × 257 grid points are used to
obtain the density distribution function on the grid. The
perfectly conducting pipe has a square shape with an
aperture size of 10 mm. It is seen that the symplectic
PIC model and the symplectic gridless particle model agree
with each other very well. The nonsymplectic spectral PIC

model yields significantly smaller emittance growth than
those from the two symplectic methods, which might
result from the numerical damping effects in the non-
symplectic integrator. The fast emittance growth within the
first 20 000 periods is caused by the space-charge driven
fourth-order collective instability. The slow emittance
growth after 20 000 periods might be due to numerical
collisional effects.
Figure 3 shows the transverse phase space distributions

at the end of the simulation (200 000 periods) from these
three models. It is seen that the distributions from all three
models show similar phase space shapes after the strong
collective resonance. However, the core density distribu-
tions show somewhat different structures. The two
symplectic models show similar structures while the non-
symplectic spectral PIC model shows a denser core. This is
also seen in the final horizontal and vertical density profiles
shown in Fig. 4.
The accuracy of the nonsymplectic PIC model can be

improved with finer step size. Figure 5 shows the 4D
emittance growth evolution from the symplectic PIC model
and those from the nonsymplectic PIC model with the
same nominal step size, from the nonsymplectic PIC model

FIG. 7. Four-dimensional emittance growth evolution with 10 A, 20 A, and 30 A beam current from the symplectic PIC model (top),
the symplectic gridless particle model (middle), and the nonsymplectic spectral PIC model (bottom).

FIG. 6. Schematic plot of a one-turn lattice that consists of 10
FODO lattice and one sextupole element.
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with one-half of the nominal step size, and from the
nonsymplectic PIC model with one-quarter of the nominal
step size. It is seen that as the step size decreases, the
emittance growth from the nonsymplectic PIC model
converges towards that from the symplectic PIC model.
In the second example, we simulated a 1 GeV coasting

proton beam transport through a nonlinear lattice. A
schematic plot of the lattice is shown in Fig. 6. Each

period of nonlinear lattice consists of 10 periods of 1 m
linear FODO lattice and a sextupole magnet to emulate a
simple storage ring. The zero current horizontal and vertical
tunes of the ring are 2.417 and 2.417, respectively. The
integrated strength of the sextupole element is 10 T=m=m.
The proton beam initial normalized transverse emittances
are still 1 μm in both directions with a 4D Gaussian
distribution.

FIG. 8. Final transverse phase of the 30 A beam from the from the symplectic PIC model (top), the symplectic gridless particle model
(middle), and the nonsymplectic spectral PIC model (bottom).
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Figure 7 shows the 4D emittance growth evolution with
10 A, 20 A, and 30 A currents from the symplectic PIC
model, the symplectic gridless particle model, and the
nonsymplectic PIC model. The space-charge tune shift with
a 10 A beam current is 0.038, with a 20 A is 0.075, and with
a 30 A is 0.113. With a 10 A current, particles stay out of
the major third-order resonance; there is little emittance
growth. With a 20 A current, the proton beam moves
near the third resonance and some particles fall into the
resonance, resulting in a significant increase of the emit-
tance growth. With a 30 A current, a lot of particles fall into
the resonance resulting in large emittance growth. It is seen
from the above plot that all three models predict this current
dependent behavior qualitatively. The two symplectic
models show very similar emittance growth evolution for
all three currents while the nonsymplectic PIC model

shows much less emittance growth compared with the
other two models. This is probably due to the numerical
damping effects in the nonsymplectic PIC model.
Figure 8 shows the final transverse phase space distri-

butions after 40 000 turns. All three models show similar
phase space shapes. The two symplectic models show
closer density distribution than the nonsymplectic PIC
model. Figure 9 shows the final horizontal and vertical
density profiles from those three models. The two sym-
plectic models yield very close density profiles with non-
Gaussian halo tails. The nonsymplectic PIC model yields a
denser core but less halo near the tail density distribution.
The accuracy of the nonsymplectic PIC model can also

be improved with a finer step size in the above test case
with nonlinear resonance. Figure 10 shows the 4D emit-
tance growth evolution from the symplectic PIC model and
those from the nonsymplectic PIC model with the same
nominal step size, from the nonsymplectic PIC model with
one-half of the nominal step size, and from the non-
symplectic PIC model with one-quarter of the nominal
step size. It is seen that as the step size decreases, the
emittance growth from the nonsymplectic PIC model
converges towards that from the symplectic PIC model
even in this nonlinear resonance case.

V. CONCLUSIONS

In this paper, we proposed a symplectic PIC model and
compared this model with the symplectic gridless particle
model and the conventional nonsymplectic PIC model for
long-term space-charge simulations of a coasting beam in a
linear transport lattice and a nonlinear lattice. Using the
same step size and the same number of modes for space-
charge solver, all three models qualitatively predict the
similar emittance growth evolution due to the space-charge
driven resonance and yield similar final phase space shapes
in the benchmark examples. Quantitatively, the symplectic
PIC and the symplectic gridless particle model agree with

FIG. 9. Final horizontal (left) and vertical (right) density profiles from the symplectic gridless particle model (red), the symplectic PIC
model (green), and the nonsymplectic spectral PIC (blue).

FIG. 10. Four-dimensional emittance growth evolution from
the symplectic PIC model (red), the nonsymplectic spectral PIC
with the nominal step size (green), the spectral PIC with half of
the nominal step size (blue), and the spectral PIC with one quarter
of the nominal step size (pink) in the nonlinear lattice with a 30 A
beam current.
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each other very well, while the nonsymplectic PIC model
yields much less emittance growth value. Using finer step
size, the emittance growth from the nonsymplectic PIC
converges towards that from the symplectic PIC model.
The computational complexity of the symplectic PIC

model is proportional to the O½Ngrid logðNgridÞ þ Np�,
where Ngrid and Np are total number of computational
grid points and macroparticles used in the simulation. The
computational complexity of the symplectic gridless par-
ticle model is proportional to the OðNmodeNpÞ, where
Nmode is the total number of modes for the space-charge
solver. On a single processor computer, with a large number
of macroparticles used, the symplectic PIC model is
computationally more efficient than the symplectic gridless
particle model. However, on a massive parallel computer,
the scalability of the symplectic PIC model may be limited
by the challenges of work load balance among multiple
processors and communication associated with the grid-
based space-charge solver and particle manager [35]. The
symplectic gridless particle model has a regular data
structure for a perfect work load balance and a small
amount of communication associated with the space-charge
solver. It scales well on both multiple processor central
processing unit computers and multiple graphic processing
unit computers [36].
In this paper, we assumed rectangular perfect conducting

pipe boundary conditions and used the spectral method
to obtain the space-charge potential. For general shape
boundary conditions or open boundary conditions, the
space-charge potential on the computational grid can be
computed using other numerical methods such as the finite
element or the Green’s function method. The symplectic
PIC model proposed here would still be valid if one uses the
resultant potential on the grid.
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